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Abstract

Deterrence of illegal activities is frequently carried out by many atomistic auditors

(tax auditors, law enforcement agents, etc.). Not much is known either normatively

about the best way to incentivize atomistic auditors, nor positively about what these

incentives actually look like in real world organizations. This paper focuses almost

exclusively on the positive question. It proposes a game-theoretic model of decentralized

deterrence and an empirical test, based on the equilibrium of the model, to identify the

incentives of individual auditors. In the special (but important) case of tax enforcement,

the paper fully characterizes the equilibrium of a strategic auditing game and provides

a method to calibrate its parameters based on audit data.

Applying the model and method to Italian auditing data provides “proof of concept:”

the methods are practical and tractable. We are able to provide an estimate of tax

evasion based on (non-random) audit data alone. Counterfactual simulation of the

model quantifies the costs and benefits of alternative auditing policies. We compare

decentralized enforcement with a counterfactual “commitment policy,” and compute

the loss from the former. Thus we are able to quantify the costs of decentralizing

enforcement.

∗We thank Dan Silverman and Joel Slemrod for useful comments.
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1 Introduction

Economic theory has long studied the problem of optimally (or at least effectively) gener-

ating deterrence, going back to the works of Becker (1968) and Ehrlich (1979). Border and

Sobel’s (1987) seminar article poses this question within an auditing game, a game where the

deterrence-generating action can be conditioned on a report by the auditee. A large body of

theoretical literature follows in their footsteps (Andreoni and Feinstein 1998 provide a good

review). This body of literature should be considered relevant, if nothing else because it has

many important applications: auditing is a core mission of many important organizations

including law enforcement agencies, tax authorities, and various regulators.

The auditing literature has not, to date, been brought to data. One reason, perhaps, is

that the relevant data have been scarce and what is available (audit data) represents a

highly selected sample of the population subject to audit. Another reason might be that

the theoretical auditing literature is “too normative,” in that it largely ignores a key aspect:

incentivizing auditors. The auditing literature simply assumes that there is a unitary actor

(a single auditor or regulator) who can effortlessly commit to any auditing policy. However

in many environments, enforcement is not actually carried out by a unitary actor but by

a multitude of individual “auditors” (police officers, tax inspectors, etc.) whose individual

behavior has negligible impact but whose aggregate behavior generates deterrence. Little is

known about how these auditors are incentivized in these organizations. Theory suggests

that incentivizing these “atomistic” auditors can be difficult.

Example 1 (Difficulty of incentivizing auditors) A tax authority faces a distribution

of firms with unknown income, each of which makes a report and pays taxes based on it. The

tax authority chooses which firms to audit based on the firms’ report, and subject to a budget

constraint on audits. A well-known result (see Border and Sobel 1987) is that the strategy that

maximizes tax returns is the following “extremal” strategy: all firms which report less than

some threshold  are audited with a probability large enough that no firm wants to underreport

below that threshold; and, no firm which reports at or above the threshold is audited. Given

this strategy, no firm is ever caught underreporting (all cheating firms make sure to report no

less than, and in fact exactly  ). Suppose now we wanted to decentralize this auditing policy,

which means we want individual auditors to carry out the required audits at a cost, say, of

 per audit. If we reward these auditors based on the evasion they uncover, then they will

want to deviate from the deterrence-maximizing auditing policy and audit some firms which

report at or above the threshold. If we don’t reward them at all, then they would shirk, and

no evasion would be deterred or detected.

This example illustrates the challenge in decentralizing incentives: whereas in the familiar

(single-agent) agency problem, giving the agent a fraction of the principal’s payoff is an

effective incentive scheme, when there are many agents this need not be so. In our case,
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rewarding auditors based on detection does not automatically promote the agency’s mission

and may, to a degree, conflict with it. Now, if theory tells us that decentralizing deterrence

can be challenging, two questions arise. A normative one: how should deterrence be optimally

decentralized? And a positive one: how do real world organizations decentralize deterrence?

We take up the second question.

The empirical literature is silent on how incentives are actually decentralized. Direct observa-

tion is difficult, in part because these incentives are implicit, that is, given through promotion

or through non-fully contractible schemes. We propose an empirical strategy for testing (and

possibly rejecting) hypotheses about how deterrence is actually decentralized. Moreover, we

do this in the context of an equilibrium auditing model, which means that the method does

not rely on sources of exogenous variation. With this premise in mind, we do the following:

1. We introduce a general auditing game in which deterrence arises as the result of equi-

librium play by many atomistic auditors. The model is general enough to encompass

settings such as tax auditing, police searches, and selective prosecution. We provide

an empirical test to diagnose the exact form of the incentives given to the individual

auditors. The test is based on the properties of the equilibrium.

2. We show theoretically that, in this auditing game, rewarding individual auditors based

on their “marginal contribution” to the organizational mission is not the best way of

promoting the institutional mission. For example, in the context of a tax auditing

game we show that rewarding auditors in proportion to the amount of tax evasion they

detect (which is their marginal contribution to the institutional mission of minimizing

aggregate amount of taxes evaded) may be inferior to rewarding them every time they

detect a cheater. This result suggests that the simple incentive scheme which rewards

the detection of cheaters need not be a bad strategy for decentralizing deterrence.

3. We then restrict attention to the special (and important) case of tax auditing. We de-

velop a new game-theoretic model in which auditors are rewarded for detecting cheaters.

4. We provide a method for calibrating this new tax auditing model. The calibration is

based on audit data. These data represent a highly selected sample: very few firms are

audited, and the decision to audit depends both on the auditor’s strategy and on the

firm’s reported tax base. Our method uses the structure of the equilibrium to correct

for these selection biases.

5. We apply the tools developed above to auditing data from INPS, the Italian agency that

audits firms to ensure that they paid their labor taxes. First we apply the diagnostic test

mentioned in part 1 and find that we cannot reject the hypothesis that INPS auditors

maximize the number of cheaters detected. This empirical finding is supported by the

theoretical finding mentioned in part 2. Then, under the assumption that the INPS

data are generated by the equilibrium of the game mentioned in part 3, we use the
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calibration method mentioned in part 4 to back out the unobservable deep parameters

of the model, such as the distribution of true tax bases of firms.

6. We do the counterfactual exercise of asking how much more revenue INPS could collect

if it somehow could solve the decentralization problem and, rather than leaving it

to its auditors to choose whom to audit, it could centrally implement a “deterrence

strategy” inspired by the literature on optimal auditing. This is the strategy introduced

in Example 1: only firms which report below a threshold are audited, and these are

audited with high probability. Based on the “deep parameters” recovered in part 5, we

find that switching to such a “deterrence strategy” does increase tax revenue relative

to the equilibrium of the no-commitment game. Quantitatively, however, the gain is

small (in the order of 5%). This is partly because the calibration method of part 4

suggests that INPS is already capturing more than 80% of the theoretical maximum

revenue attainable, and so there is little room for improvement.

1.1 Contributions of the paper

The main contribution of the paper is to connect auditing theory with data. We develop

an equilibrium model, and a method for estimating the key parameters of that model from

auditing data alone. The method takes careful account of the multiple sources of equilibrium

selection that generate the auditing data.

We believe our paper is the first to bring to data any game-theoretic model of auditing.

Our analysis suggests that the ideas developed in the theoretical auditing literature can

actually inform empirical research, although too little emphasis has been placed until now

on decentralized models, that is, agency models in which auditing is carried out by many

agents.

Applying the model and method to Italian auditing data provides “proof of concept:” the

methods are practical and tractable. We are able to provide an estimate of tax evasion based

on (non-random) audit data alone.

Counterfactual simulation of the model quantifies the costs and benefits of alternative au-

diting policies. We compare decentralized enforcement with a counterfactual “commitment

policy,” and compute the loss from the former. Thus we are able to quantify the costs of

decentralizing enforcement.

Aside from these “big picture” contributions, the technical results contained in Proposition

1 and Section 5 are novel.
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1.2 Related literature

There are many theoretical models of auditing.1 Almost always these models assume that the

tax agency can directly commit to an auditing policy. These models, therefore, do not address

the issue of decentralized enforcement. However there are two exceptions: Scotchmer (1986)

and Erard and Feinstein (1994) study the equilibrium of a game in which the tax agency

cannot commit. The key difference with the model analyzed in Sections 5 and 6 is that

our auditors maximize the probability of finding a cheater, whereas in these other works the

agency maximizes the expected returns from auditing. This is an important difference: not

only are the testable implications different but, furthermore, there are normative reasons to

explore our set of assumptions (refer to Example 5).2 None of the models in this literature

explores empirical applications.

There are a few theoretical models of delegated auditing. Melumad and Mookherjee (1986)

study the optimal incentive scheme to be used in delegating to a single auditor. In their case

the auditor has an impact on the aggregate, and so she can be incentivized by conditioning

her compensation on aggregate outcomes. We focus instead on the atomistic auditors case

where such incentives would not be effective. Sanchez and Sobel (1993) study a model of

delegated tax auditing in which the (single) auditor seeks to maximize tax revenue, whereas

the principal also cares about the distributional impact of taxes, i.e., whether the rich or the

poor bear the burden. This divergence of objectives leads the principal to underfund the

auditor’s budget.

The idea that delegated deterrence is imperfect is not new. In the context of police enforce-

ment, Persico (2002) shows that if individual police officers maximize successful interdiction

then crime need not be minimized. This result can be interpreted as exposing the limits of

decentralized deterrence. In the context of antitrust enforcement, Harrington (2010) makes a

related point; he shows that the objective of an antitrust authority to maximize the number

of successfully prosecuted cartels can be at odds with the social objective of minimizing the

number of cartels that form.

The identification result presented in Proposition 1 is somewhat related to a test for racial

bias developed by Knowles et al. (2001). See also Anwar and Fang (2006) for a different but

related test for racial bias. The connection is that racial bias in these papers is a parameter

in the police objective function, and so these tests address a special case of the question

addressed in Proposition 1. Relative to this strand of the literature, the result of Proposition

1We define an auditing game as a game of incomplete information in which firms choose how much of

their income to report, and an auditor decides which firms to audit based partly on the reports. If the firm is

not audited then the report determines the taxes paid. The report also determines a penalty, which is levied

only if the firm is audited and did not report honestly. The first model of optimal auditing is Border and

Sobel (1978), and many variants have followed. See Andreoni and Feinstein (1998) for a survey of work in

this area.
2Example 5 shows that it may be better for a principal to make his agents maximize the probability of

finding a cheater rather than the expected returns from auditing, even if the principal maximizes the latter!
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1 is not parametric (it is about estimating an unknown function  rather than a parameter)

and, also, is derived in a much more general environment.

More broadly, the present paper is related to the literature on tax compliance. This vast

literature is surveyed in two recent papers (Andreoni et al. 1998, Slemrod and Yitzhaki

2002). One approach to measuring tax compliance has been to estimate the elasticity of

taxable income to marginal tax rates. This elasticity captures all the distortions created by

income tax system, including avoidance and evasion. See Saez, Slemrod and Giertz (2011) for

a survey of this approach. Recently, an innovative strand of literature has taken advantage

of random experiments to estimate tax evasion. Slemrod et al. (2001) study the effects of

“threat-of-audit” letters in Minnesota and show an increase in compliance following these

letters. Kleven et al. (2011) study a more extensive Danish income tax auditing experiment.

These papers are conceptually different from the present paper because they use unanticipated

changes in audits. Such “out of equilibrium” are very good for measuring compliance, but by

construction this approach cannot say much about the behavior/incentives of auditors which

is the focus of the present paper. So we view this strand of the literature as complementary

to our work.

2 A General Auditing Game

We now present a rather general framework that can encompass most auditing games which

are present in the literature. For expositional convenience we start by describing a simple

version of the game where we assume only one audit class, then extend it to allow for several

audit classes.

2.1 The framework, simplified

The players are: a mass of auditors and a mass of auditees, both with measure 1. Each

auditee has a true type  and reports a number  The auditee’s true type is unobserved by

the auditor unless the auditee is audited. These true types are distributed with density  () 

The function (  ) denotes the auditor’s expected payoff from auditing with probability

 an auditee who reports  and has type  The function (  ) represents the expected

payoff of a auditees with type  who reports  and is audited with probability . Each auditor

selects a probability  () with which he is going to audit reports  subject to the constraint

that the auditor can make no more than  audits. Thus  captures the relative scarcity of

auditing resources. The function  () denotes the report of an auditee with true type 

A Nash equilibrium of this game solves the following program:
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∗ (·) ∈ argmax
(·)

Z 



(  ()   ( ()))  () 

subject to:

Z 



 ( ())  ()  ≤ 

 () ∈ argmax


(  ∗ ()) (NOCOMM)

In words, each auditor selects the function  (·) that maximizes his expected payoff, subject
to a budget constraint and subject to the constraint that the auditees are best responding

to the aggregate function ∗ (·) which aggregates the actions of all auditors. Of note, the
auditor regards the function ∗ (·) as given when choosing his strategy  (·)  This assumption
reflects the atomistic size of each auditor.3

The budget constraint says that the individual auditor’s total effort cannot exceed  This

constraint will hold with equality in equilibrium, and therefore  can be interpreted as

specifying a target level of effort which is determined by a principal. Specifically, consider

an environment in which the auditors trade off the payoff function  against a cost of effort


³R 


 ( ())  () 

´
. The principal’s problem is to set  in order to induce a desired level

of effort ∗. This is a classic agency problem in which the principal elicits effort by promising
 After the payoff function  has been set by the principal, the agent’s problem reduces to

the one we study with  = ∗.

We now present some applications of this general framework.

Example 2 In the tax auditing context let  represent a tax report,  the true tax base

of the taxpayer,  the tax rate and  the penalty that is applied to those who underreport.

We take  and  to be determined exogenously (statutorily). Then we have (  ) =

 (− −  (− )) + (1− ) (− ) for  ≤  where  represents the expected cost of

underreporting. Moreover,

1. If auditors maximize the revenue from the audits then (  ) = ·( + )max (−  0) 

2. If auditors maximize the total returns (taxes paid plus revenue from audits) then (  ) =

 +  · ( + )max (−  0) 

3. If auditors maximize the success rate of audits then (  ) = (−)0

Example 3 In the context of selective prosecution (a district attorney who selects which cases

to prosecute),  represents the case’s observable characteristics,  the true underlying facts to

3Since the auditors have mass 1, we are justified in defining ∗ (·) as we do in the first line of the pro-
gramming problem.
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be ascertained (including whether the crime has been committed), and  the probability that a

case with characteristics  is prosecuted. The function (  ∗ ()) represents the expected
cost of misrepresenting as  the case’s true type  (cover-up).

A distinctive feature of selective prosecution is that the crime has been committed already,

so there is no question of deterrence. The next example shows how to introduce deterrence

into this framework.

Example 4 In a policing context in which we care about the deterrence effect of searches, we

let (  ) =  · (  ) where (  ) represent the probability that a citizen of type 
who reports type  is a criminal, given that citizens who report  are policed with probability 

Typically we expect the function  to be decreasing in  due to the deterrence effect. In this

framework, therefore, the function  is a reduced form that embeds the potential criminals’

behavior. If we wish to ignore the possibility of misrepresentation we may let  ≡  The

function (  ) represents the payoff of a police officer who maximizes the expected return

from his searches.

2.2 Enriching the framework

The model above is sufficiently general to embed most of the theoretical models of strategic

auditing. For empirical purposes, however, it is important to enrich the model by considering

several extensions.

Several auditors The auditees may be subject to simultaneous auditing by other auditors,

over and above the auditor that is the focus of out interest. For example, an Italian firm

is not only subject to INPS audits, but also to income tax audits carried out by a different

auditor, the Guardia di Finanza. In these cases we interpret the function  as expressing

the auditee’s incentives to misrepresent its income after taking into account all the other

“extraneous” audits.

Several audit classes It is important to allow for the presence of several audit classes

in which the auditor classifies auditees according to characteristics which are observable to

the auditor. (We will also have to worry that we, the researchers, may not be able fully to

distinguish these audit classes; more on this later.)

We assume that the auditor classifies auditees into different audit classes according to any

number of auditee characteristics which are observable to the auditor. An audit class is

simply a group of auditees who share a specific combination of observable characteristics.

Auditees that belong to a given audit class are distinctive in the eye of the auditor due to

the distribution of their type, which the auditor uses to make inference. Let  index the set
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of all audit classes that are distinguishable by the auditor. Their relative frequency in the

population is given by  ()  with
P

 () = 1 Conditional on being in class  the type

of auditees is distributed according to the probability density  ()  A auditee from audit

class  faces a class-specific audit schedule  (·) 

Inaccurate audits We allow for audits to produce imperfect signals of a auditee’s true

type. Formally, we assume that the auditor does not observe a auditee’s type  but rather

a number  which is correlated with  and that we call detected type. We assume that the

auditor maximizes

(  )

Where  is the realization of a random variable Ξ with distribution  (| ) 
In the tax auditing context, introducing  allows for the possibility that the auditor might

not detect underreporting (in which case  ≤  even though   ) or that the auditor may

in fact mistakenly “overdetect” (and in this case   ). Note that we allow the distribution

of  to depend on the audit class  This dependence allows for the possibility that it might

be more difficult to detect fraud in certain occupations (for example, industries that use

part-time labor such as the restaurant industry, construction, agriculture).

In the presence of inaccurate audits, the auditee’s payoff is potentially a function of  so we

will write

(   )

The assumption of class-specific inaccuracies in audits is made by Macho-Stadler and Perez-

Castrillo (1997).

Residual heterogeneity of auditees In the base model the only unobserved heterogene-

ity of auditees is , their type. A (somewhat stark) implication is that all auditees with

the same type report in the same way. We can relax this assumption by simply assum-

ing that the auditee’s unobserved characteristics are expressed by an -dimensional vector

x =(1  ) with density  (x)  For ease of interpretation we assume that 1 the first

dimension of the vector, represents the portion of the type which is payoff-relevant for the

auditor (in the tax auditing case, the firm’s true tax base). The remaining dimensions cap-

ture additional heterogeneity which impacts the auditee’s choice of reporting. The auditee’s

payoff will then be given by (x  ) and the auditee’s equilibrium strategy by  (x) 

The increased dimensionality permitted in this general formulation allows us to capture, as

a special case, the case in which a fraction of the auditees is honest and never underreports,

while the rest is “normal” and behaves as in the baseline model. A model with these features

is analyzed in Section 5.

After introducing all these extensions, the equilibrium of the auditing game is defined by the
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following constrained maximization problem.

{∗ (·)} ∈ arg max{(·)}

X


 ()

Z
 [(Ξ  (x)   ( (x)))|x  (x)]  (x) x

st:
X


 ()

Z
 ( (x))  (x) x ≤ 

 (x) ∈ argmax


 [(Ξx  
∗
 ())|x ] for each x

where the integrals are understood to be of multiple variables, over the  dimensions of x

3 Identification of the Auditors’ Objective Function

We take the viewpoint that the auditors’ incentives are often implicit and anyway cannot be

observed directly. Our goal in this section is to use the available data to learn the objective

functions that auditor and auditees are maximizing, i.e., the functional forms  and  We

call this the identification problem. Proposition 1 at the end of this section provides an

answer to the identification problem.

For ease of exposition, in this section we proceed as if  can only take integer values (dollars,

or cents, in the tax auditing framework) and  also can only take integer values.4

3.1 Assumptions

Ideally, we would like the identification strategy not to depend on knowledge of the fine details

of the problem (i.e., our knowledge of, or assumptions about the distributions  () and 

for example). In the same spirit, we would like our methods to be robust to unobservables,

that is, we want to allow for the possibility that we, the researcher, may not know as much as

the auditor and auditees know when they set their strategies. This is an important robustness

property, because we often lack access to the full data that the auditor can see. In this spirit

of “informational parsimony,” we proceed to lay out some (relatively weak) assumptions

about the structure of the game and about what features of the data we can observe.

We henceforth maintain the following assumptions. Taken together, these assumptions char-

acterize our hitherto abstract setting as an auditing game.

Assumption 1 (Deterrability) For all  if  () = 1 then no auditee in class  with

1   chooses to report 

4Thus the probability  (·) must be understood as having a support that is countable, rather than a
continuum.
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Assumption 1 says that, if  is audited with sufficiently high probability, then the auditee’s

payoff function is such that no type will underreport . This assumption means that every

type can be deterred from misreporting, if the probability of auditing is sufficiently large.

Although the assumption is stated in “behavioral terms,” it can easily be restated (though

more cumbersomely) in terms of primitives. We chose not to do so to make the statement

more transparent.

The next assumption says that the auditor’s expected payoff from auditing someone who

reports correctly (or even overreports) cannot be positive.

Assumption 2 (Unprofitability of auditing auditees who report correctly) For all

x we have  [(Ξ  )|x ] ≤ 0 when  ≥ 1

Even if  systematically “exaggerates” relative to 1 Assumption 2 can hold if there is a cost

of auditing.

Assumption 3 (Auditor’s marginal reward to effort is constant) (  ) is a linear

affine function of  that is,

(  ) = ( ) + ( )

with ( ) ≥ 0

The term ( ) represents the perceived return from audits, including any costs of auditing,

whereas the term ( ) can be interpreted as the contribution to the auditor’s payoff of

a auditee who reports  and is not audited; in the tax auditing context, this would be the

tax paid before the audit, so it makes sense to assume that it is nonnegative. Assumption 3

embodies the notion of atomistic auditors. If an auditor is atomistic, then the return to his

action  must be linear in  We view Assumption 3 as not very restrictive; this assumption

holds in Example 2 above, and in most models featuring decentralized deterrence. In any

case, this assumption can be tested with data, as discussed in the next Proposition.

What we cannot observe: latent audit classes We allow for the possibility that we,

the researcher, are only able to observe coarse partitions encompassing several audit classes.

We will denote these partitions by  For example, the set of audit classes observed by

the auditor may be 1  5 but we, the researcher, are only able to ascertain whether a

particular observation belongs to 1 = {1 2 3} or 2 = {4 5} 

What we can observe: empirical averages We assume that we, the researcher, observe

individual data on each audit. Audits are indexed by  For each audit  we observe the
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reported income  the detected income  and what partition  () the audited auditee

belongs to.

Take any function  ( )  Think of it provisionally as the return from auditing a auditee

who reports  and is found to have a tax base  For each  and each  we want to form

the sample average of  ( ) conditional on  and on , which is defined as follows. Let

the set of all audits of auditees who report  and belong to partition  be denoted by

 () = { :  =  () = } 

Then the average  conditional on  and on  is the statistic defined as

 () =

P
∈()

( )P
∈()

1
 (1)

and we set  () = 0 when its denominator is zero. The quantity  () is to be

interpreted as the average return, as computed from the data, from auditing a auditee in

partition  who reports income  Our identification strategy will be based on studying the

properties of  () 

Of note,  () can be computed using solely informations about audits. It is not necessary

to have information about the distributions  () and  nor even about the probability of

being audited  This parsimony is an attractive feature of the methodology we propose.

We think of each point in our data as an i.i.d. realization of a random vector generated

by the equilibrium behavior of auditees and auditor. Thus, the probability that a random

element of our sample (  ()) is equal to ( ) is given byX
∈

x∈∗

()

 ()  (x) 
∗
 ()  (|x )  (2)

where ∗ () represents the equilibrium probability that a auditee in audit class  who reports
 is audited, and ∗

 () represents the set of x’s which in equilibrium lead a auditee in audit

class  to report  The term  ()  (x) 
∗
 () represents the probability that a auditee

belongs to audit class  and has a true tax base x which in equilibrium leads the auditee to

report , and is audited. Using formula (2), the expected value of  (;) is given byP
∈

x∈∗

()

 [(Ξ )|x ]  ()  (x) ∗ ()P
∈

x∈∗

()

 ()  (x) 
∗
 ()

(3)

This formula contains all the functions  ()   (·)  ∗ (·) about which we, the parsimonious
researcher, avoid making assumptions. Expression (3) is the limit in probability of  ()

as the sample size grows large.
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3.2 Identification result

We are now ready to present our identification result. The next proposition says, roughly,

that if we find some statistic of the data that is equalized across audit classes, then this

statistic could well be part of what the auditor is maximizing. Intuitively, an auditor will

arbitrage his audits across audit classes, i.e., will direct his audits on the classes that promise

the highest return from the audit–whatever that return might be. This arbitraging behavior

leads, in an equilibriumwhere auditees respond to auditing, to an equalization of the auditor’s

margins across all audited classes.

Proposition 1 If one can reject the hypothesis that 
£
 ()

¤
is independent of  and

 then one can reject the joint hypotheses that (a) the auditor can/does not commit to

an auditing schedule, and (b) Assumption 3 holds with ( ) = ( ). Conversely, if a

function  ( ) can be found such that one cannot reject the hypothesis that 
£
 ()

¤
is

independent of  and  then one cannot reject the hypotheses that (a) the auditor can/does

not commit to an auditing schedule, and (b) Assumption 3 holds with ( ) = ( ).

Proof. The proof is made by showing that, if assumption () and () hold then 
£
 ()

¤
is independent of  and 

By assumption (a) the auditor cannot commit to an auditing schedule  and so the equilibrium

is characterized by the following conditions.

{∗ (·)} ∈ arg max{(·)}

X


 ()

Z
 [(Ξ  (x)   ( (x)))|x  (x)]  (x) x

st:
X


 ()

Z 



 ( (x))  (x) x ≤ 

 (x) ∈ argmax


 [(Ξx  
∗
 ())|x ] for each x (4)

Let ∗ (x; 
∗
 ()) denote the reporting strategy that solves (4). Since condition (4) involves

∗ ()  not  (), the behavior of auditees is a function of the auditor’s expected equilibrium
strategy, not of the actual strategy employed by the auditor. We shall therefore write, for

ease of notation, ∗ (x; 
∗
 ()) = ∗ (x)  Form the Lagrangian for the auditor’s problem:

L ({ (·)} ;) =
X


 ()

Z
 [(Ξ 

∗
 (x)   (

∗
 (x)))|x ∗ ()]  (x) x

− 

"X


 ()

Z
 (

∗
 (x))  (x) x−

#

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Use assumption 3 to substitute into the Lagrangian, which upon rearrangement readsX


 ()

Z
{ [(Ξ 

∗
 (x))|x ∗ (x)]− }  (∗ (x))  (x) x

+
X


 ()

Z
 [(Ξ 

∗
 (x))|x ∗ (x)]  (x) x+ 

The first term of the Lagrangian can be written asX


 ()
X


Z
∗

()

{ [(Ξ )|x ]− }  ()  (x) x

X


 ()
X


 ()

"Z
∗

()

{ [(Ξ )|x ]− }  (x) x

#

As the Lagrangian is linear in each  (·)  the necessary conditions for optimality of the
auditor’s strategy are that, if ∗ ()  0 then  [(Ξ )|x ∈∗

 ()  ] ≥ .

Now, suppose by contradiction that the strict inequality  [(Ξ )|x ∈∗
 ()  ]   holds

for some  Then at the optimum it must be ∗ () = 1 Because 
∗
 () = 1 Assumptions 1

and 2 together imply that

 [(Ξ )|x ∈∗
 ()  ] +  [(Ξ )|x ∈∗

 ()  ] ≤ 0 (5)

for that  But, since  [(Ξ )|x ∈∗
 ()  ]   ≥ 0, and  [(Ξ )|x ∈∗

 ()  ] ≥ 0
by Assumption 3, inequality (5) cannot hold. This contradiction proves that at the optimum

it must be  [(Ξ )|x ∈∗
 ()  ] =  for all  such that ∗ ()  0 We may rewrite this

condition as

 [(Ξ )|x ∈∗
 ()  ] =  for all  such that ∗ ()  0 (6)

Now, remember that from (3) we had


£
 ()

¤
=

P
∈

 () ∗ ()
P

x∈∗

() [(Ξ )|x ]  (x)P

∈
 () ∗ ()

P
x∈∗


()  (x)

=

P
∈

 () ∗ ()
³P

x∈∗

()  (x)

´
 [(Ξ )|x ∈∗

 ()  ]P
∈

 () ∗ ()
P

x∈∗

()  (x)
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>From assumption (b) we know that ( ) = ( ) and substituting into 
£
 ()

¤
we

get


£
 ()

¤
=

P
∈

 () ∗ ()
³P

x∈∗

()  (x)

´
 [(Ξ )|x ∈∗

 ()  ]P
∈

 () ∗ ()
P

x∈∗

()  (x)

= 

where the last equality makes use of (6). We have shown that, if hypotheses () and () hold

then 
£
 ()

¤
is equal to a constant independent of  and 

This proposition provides a straightforward identification strategy: try out various “eco-

nomically reasonable” functions ( ) and check which, if any, has the property that it is

equalized across all reports that are audited. If such a function is found, then this is identified

as ( ) This identification strategy is robust to details, in the sense that it is robust to

the many frictions we have built into our model, and it is informationally parsimonious–it

does not require us to know  ()   (·)  or ∗ (·)  or even solve for the equilibrium behavior
of auditees.

Of note, this identification strategy is agnostic about the objective function of auditees. This

is convenient in that it is not necessary to make specific assumptions about the nature of the

auditees’ decision problem, in order to get identification. It is a drawback, however, in that

the identification analysis per se does not give us any information about what the auditees

might be maximizing.

Finally, we acknowledge that Proposition 1 has a slight “data mining” flavor: since little

structure is imposed on the function  there is bound to be some  which satisfies the

independence requirement. Therefore the value of the identification strategy rests on how

reasonable the resulting  is. There are several requirements that can increase our confidence

that the specific  we find is not the outcome of data mining. First, we can do additional

“placebo” tests, showing that the expression 
£
 ()

¤
is not independent of some other

characteristic other than those which the auditor cannot arbitrage over. (The theory would

not predict such independence). Second, we can ask that the  we find be “simple,” such that

it could actually be used in a real-world compensation scheme. Third, one can ask that it be

“plausible:” that there be a theoretical justification for why the atomistic auditors would be

endowed with that specific  In our empirical application we will apply these three criteria.

4 Setting the Auditors’ Incentives

Proposition 1 demonstrates how the data can be used to identify the objective function

which is actually pursued by auditors. In this section we ask what objective function the

principal would actually want to give the auditors. We do not seek a full characterization of

the optimal objective function, because the characterization is sure to be highly sensitive to
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modeling assumptions and thus, we feel, of little practical relevance. We ask, instead, a more

limited question. Taking the perspective of a principal who is charged with implementing an

institutional mission, we ask whether it is optimal for the principal to give individual auditors

“a stake” in the institutional mission. We show that, generically, the answer is no. In fact, in

the context of tax auditing we show that it may be better to incentivize the auditors based

on the number of cheaters they have uncovered, even though this is not “a stake” in the

institutional mission, which is to minimize the amount of taxes evaded. This answer is in

contrast with the standard prescription from single-agent agency theory, which is that, in the

absence of “frictions” such as differences in risk aversion, etc., the optimal incentive scheme

is to “sell the firm” (or at least a stake in it) to the agent. The root of the difference lies

in the fact that, when the agents (auditors) are many, giving the auditors “a stake” in the

institutional mission does not account for the deterrence effect.

4.1 The centralized problem

Let us start with the centralized problem–a planner’s or principal’s problem, unconstrained

by the decentralization incentives. The principal sets an aggregate auditing strategy  ()

which specifies the probability of being audited for an auditee who reports , to maximize the

average of a “mission function.” The mission function (  ) embodies the institutional

payoff from auditing with probability  an auditee who has type  and reports  In the

tax auditing framework, for example, the conventional assumption about the institutional

mission is maximization of total returns so that (  ) =  +  · ( + )max (−  0) 

Formally, the equilibrium of the centralized auditing problem is defined by the following

constrained maximization problem.

∗ (·) ∈ argmax
(·)

Z 



(  ()   ( ()))  () 

subject to:

Z 



 ( ())  ()  ≤ 

 () ∈ argmax


(   ()) (COMM)

The principal’s choice of strategy is subject to a budget constraint, and also subject to the

constraint that the auditees are best responding to the aggregate function  (·). Notice a
key difference between constraint (COMM) and constraint (NOCOMM) on page 6: whereas

the latter involves ∗ (·)  the one in the present problem involves  (·)  In words, equation
(NOCOMM) represents the case in which the auditor cannot affect the aggregate auditing

schedule, whereas equation (COMM) represents the case in which it can.

The first order conditions of the Lagrangian associated to the centralized problem are given

16



by



 (b ())
Z 



£
( b ()   (b ()))−  (b ())¤  ()  = 0 for all 

where b () denotes the solution to the incentive compatibility constraint (COMM). Problem
(COMM) depends on the function  (·), a property which reflects the deterrence effect of
choosing a policy  The first order conditions of the Lagrangian can be rewritten as follows.

£
3 ( b ()   (b ()))− 

¤
 () +

Z 



2 ( b ()   (b ())) b ()
 (b ())  ()  = 0 for all 

(7)

The term b ()  (b ()) inside the integral reflects the deterrence effect: changing the audit
schedule  (·) at the single point b () affects the report of types  Moreover, all the reports
by the other types are also affected through non-local effects on the incentive compatibility

constraint (COMM). The integral accounts for the non-local changes.

4.2 The decentralized problem

By comparison, the first order conditions for the decentralized problem on page 6 are given

by

[3( 
∗ ()   (∗ ()))− ]  () = 0 for all  (8)

where ∗ () denotes the solution to the incentive compatibility constraint (NOCOMM).
Unlike in (7) there is no integral term in this equation because in the decentralized problem

no individual auditor can affect ∗ () 

4.3 Why giving the auditor a stake in the agency mission is not

the optimal incentive scheme in the decentralized problem

Suppose that the auditor in the decentralized problem is incentivized at the marginal rate

of 3  which defines the auditor’s individual contribution to the institutional mission. Then

in equilibrium equation (8) needs to hold with 3 = 3 . But then generically equation (8)

cannot hold. This simple observation is recorded next.

Conclusion 1 Setting up a reward system based on the auditor’s individual contribution to

the institutional mission, will generally not implement the solution of the centralized problem.

The reason is that the marginal contribution of an atomistic agent does not account for the

deterrence effect.

A practical implication of this observation can be seen in the tax auditing framework. In that

framework the conventional assumption is that the institutional mission is maximization of
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total returns from taxation: (  ) = + · ( + )max (−  0)  >From this it follows

that 3 (  ) = ( + )max (−  0); this means that rewarding the auditor’s individual

contribution to the institutional mission means, in fact, rewarding the auditor in proportion

to the amount of tax evasion he uncovers. As we have seen, there is no presumption that

this should be an optimal scheme, and indeed, there should be a presumption that the

principal should be able to do better than this. We now present an example in which another

“simple” incentive scheme, namely rewarding agents based on the number of cheaters they

find, regardless of the magnitude evaded, does better in terms of the institutional mission: it

yields higher total returns from taxation.

Example 5 Let’s consider the following set-up introduced in Erard and Feinstein (1994).

The tax base  is uniformly distributed on [0 1]. The tax rate is  = 50% and the fines are

 = 50% of the underreported amount. The resources of the auditor are such that  = 10%

of the reports can be audited. Suppose that there is a fraction  = 50% of firms that report

honestly their tax base independently of the auditors’ strategy. Let’s assume first that auditors

maximize the amount of evasion he uncovers, which means that an auditor’s objective function

is given by 3 (  ) = ( + )max (−  0). Then in equilibrium tax payers underreport

in by a constant amount  so that  =  −  (they report 0 if  ≤  ) and the probability

of auditing a firm which reports  is given by  () = 1
2

³
1− exp

³
−(1− )



´´
 The total tax

revenue (taxes +fines) associated with the auditor’s objective is  = 0174 See Appendix A

for details.

Let’s now consider the alternative objective of maximizing detection,
¡
3 (  ) = (−)0

¢
.

In equilibrium, tax payers underreport by a constant ratio,  = 
+1

. The auditing strategy

consists in a probability of auditing reports  () = 1
2

¡
1− ¡+1



¢¢

 The revenue associated

is  = 0179. See Appendix A for details.

The revenue is 3% larger when the auditor maximizes detection than when he maximizes

the revenue generated by the audits. The intuition for why auditors who seek to maximize

detections (MD) create more deterrence than those who seek to maximize returns from audits

(MR) is as follows. MR leads auditors to audit large firms (more precisely, firms who report

large amounts, which in a monotone strategy equilibrium is the same thing), because these

firms are more likely to evade more taxes. This “size effect” is absent if auditors MD.

Therefore, we should expect that in equilibrium auditors who MD are more willing to audit

small firms, compared to auditors who MR. Therefore when auditors MD the aggregate audit

strategy places greater probability of auditing on small firms. This means that the aggregate

audit strategy under MD is closer to the extremal strategy of the Border-Sobel setup with

commitment discussed in Example 1.

Example 1 can be interpreted as showing that if a principal seeks to deter tax evasion, it can

be better for that principal to reward his agents for detecting cheaters, rather than for finding

large underreports. To draw this conclusion, it is necessary to consider the wage bill that
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the principal needs to pay. We assume that the principal sets the rewards in both systems

so as to exactly compensate the auditors for their effort, but only just. The auditor’s effort

in Example 1 is represented by the 10% fraction if firms which is audited. Since the effort

is kept constant when we compare the two incentive schemes, the wage bill for the principal

will also be constant. Therefore Example 1 can be interpreted as showing that, when the

principal switches to rewarding detection the wage bill remains the same, and deterrence

increases.

5 A Special Auditing Game: Tax Auditing to Maxi-

mize Detections

This section develops and analyzes a new theoretical model of tax evasion and enforcement.

Relative to the general model introduced in Section 2, the tax auditing model is special in that

the auditees (firms) are assumed to pursue a very specific objective, which is to minimize the

amount of taxes paid (inclusive of penalties for detected underreporting). We also initially

restrict attention to a single audit class.

There is a continuum of firms with true tax base  distributed according to the density  ()

on the interval [ ]. A firm reporting a type  pays taxes  · . We make the stipulation
that in equilibrium no firm can report below  the lowest possible income; in other words,

all firms must pay at least the taxes corresponding to income 

Following Erard and Feinstein (1994), we assume that there is a proportion  of honest firms

and a proportion (1− ) of strategic firms5. Honest firms always report the true value 

and pay taxes  · . A strategic firm chooses which tax base  to report to the tax authority

in order to minimize its expected taxes. In doing so, the firm recognizes that it faces a

probability schedule  () that relates the report  to the probability of being audited. Firms

are aware that in case of an audit, the true characteristic  will be discovered and then

taxes will be assessed on the true level  and a penalty added which is proportional to the

amount of evasion. Thus in case of an audit, a firm  that reported  ≤ , pays a total of

 ·  +  (− ). We will construct a separating equilibrium in which strategic firms report

their income according to a strategy  () that is strictly increasing in .

The auditor observes the report of the firms and chooses an audit schedule  (). We assume

that the auditor does not have the power to commit to an audit schedule, and that the

auditor maximizes the number of successful audits. The first assumption situates this model

as a special case of the decentralized model analyzed in Section 3; the second assumption

5We follow Erard and Feinstein (1994) and call firms that lways report their true tax base as honest. This

source of behavior can come from the inability of some firms to undereport, because of third pary reporting

or other administrative reasons. See Kleven et al. (2011) for a more complete discussion of the inability to

evade taxation.
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ensures that the auditor’s objective function satisfies Assumption 3.

The auditor chooses how many firms to audit by equalizing the expected probability of a

successful audit to a (constant) marginal cost of an audit. This marginal cost is denoted by

(1− )  and it can be any number between zero and one. We choose this formulation for ease

of exposition. This formulation is seen to be equivalent to the more common formulation

in which the auditor has a budget constraint on the number of firms it can audit, once we

reinterpret the Lagrange multiplier on the budget constraint as the marginal cost of an audit.

5.1 The firm’s problem

A firm with type  chooses which  ≤  to report so as to maximize

 () (− −  (− )) + (1−  ()) (− ) . (9)

We will construct an equilibrium in which all strategic firms will misreport. In that case

the constraint  ≤  is never binding and the first-order conditions associated with (9) are

necessary conditions for a maximum. They are

0 () ( − ) (+ ) +  () (+ )−  = 0, (10)

which can be rewritten as

∗ () =  +
 ()− 

+

0 ()
, (11)

where ∗ () denotes the true type of a strategic firm which in equilibrium reports   ∗ () 
We note for future reference that if  () ≥ 

+
then it is optimal for the firm to report its

true tax base 

Concavity of the objective function with respect to  is a sufficient condition for the first

order conditions to identify a global maximum. Concavity means that, for all  and   ,

the second derivative of the objective function with respect to  must be negative:

(+ ) [00 () ( − ) + 20 ()] ≤ 0. (12)

5.2 The auditor’s problem

Observing a report , the auditor realizes that it can come from an honest firm with true

type  =  or from a strategic firm that underreported taxes with true type ∗ ()  . Since

the auditor seeks to maximize the probability of a successful audit and does not have the

power to commit to an audit schedule, the auditor’s best response is to only audits reports

which have the highest probability of being made by cheating firms. This implies that, in
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equilibrium, all reports audited with positive probability need to lead to the same probability

of success.

The auditor uses Bayes’ Rule to assess the probability that a firm reporting  underreported

its taxes. Among the honest types, the mass who report in the interval of length ∆ centered

around  are approximately  () ·∆ Among the strategic types, the mass who report in that

same interval are approximately  (∗ ()) ·∗ (∆)  where we denote ∗ (∆) = ∗ ( +∆2)−
∗ ( −∆2)  Therefore, the probability of an honest type conditional on reporting in the

interval is
 ()∆

 ()∆+ (1− )  (∗ ())∗ (∆)


Dividing by ∆ and letting ∆→ 0 yields

 ()

 () + (1− )  (∗ ()) 
∗()


. (13)

A constant success of audits means that on the range of reports audited, the probability of

honest types must be constant and equal to  ∈ (0 1)  Indeed, if this probability were larger
(respectively, smaller) than  then the expected success rate on every audit would be lower

(resp., larger) than the marginal cost of an audit, which cannot be the case in equilibrium.

Therefore, in equilibrium it must be

 ()

 () + (1− )  (∗ ()) 
∗()


=  (14)

Denoting
 (1− )

(1− ) 
= 

we can rewrite (14) as

 (∗ ())
∗


=

 (1− )

(1− ) 
 () =  ()  (15)

5.3 Equilibrium

Let us start by establishing the support of the reporting strategies must be an interval of

the form [ ∗()]. Remember that in equilibrium no firm can report below  the lowest

possible income. Since a firm with income  will not report above its true income, it must

be ∗ () =  Further, the range of the reporting strategy must be an interval. To see this,

observe that if a report  is not used by any strategic firm, then ∗ () must be zero since the
audits at that report would be only of honest firms. But a zero auditing probability would

lead all firms that report more than  to want to deviate to that report. This means that if

tax report  is made in equilibrium, then all reports below  are also used by some firm.
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Let us further observe that in any equilibrium with some evasion it must be

∗ (∗ ()) = 0 (16)

This boundary condition comes from the following observation. If ∗ (∗ ())  0 and ∗ () 
 then we would have an immediate contradiction since a firm with type  would rather

report a tiny bit higher than ∗() avoiding all audits.

Next comes a formal definition of the equilibrium in this game.

Definition 1 For any  ∈ (0 1)  an equilibrium of the auditing game is a reporting strategy
∗ (·) with associated inverse strategy ∗−1 (·) = ∗ (·)  and an auditing schedule ∗ (·) with
support [ ∗()] that solve the firm’s first and second order conditions (11) and (12), the
auditors’ indifference condition (15), and the boundary condition (16).

The next proposition shows that an equilibrium exists and characterizes it.

Proposition 2 (Equilibrium of the auditing game) For any  ∈ (0 1) there exists an
equilibrium of the auditing game. It is given by a reporting strategy ∗ (·) and an auditing
schedule ∗ (·) that solve:

∗ () = −1 ( () )

∗ () = max

(


 + 
[1− exp

Ã
−
Z −1(1)



1

∗−1()− 


!
] 0

)

 =
 (1− )

(1− ) 


Proof. Let us first characterize the equilibrium reporting strategies. Integrating both sides

of (15) yields

 () =  (()) +  (17)

Since ∗ () =  it follows from (17) evaluated at  =  that  = 0. Therefore, for a generic

   we have

∗ () = −1 ( ())  or equivalently (18)

∗ () = −1
µ
 ()



¶
. (19)

We now characterize the equilibrium auditing schedule. Using (18) to substitute into (11)

we get
∗0 ()

∗ ()− 
+

=
1

−1 ( ())− 
 (20)
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Integrating both sides yields:

ln

µ


 + 
− ∗ ()

¶
= −

Z ∗()



1

−1 ( ())− 
 + 

∗ () =


 + 
− exp

Ã
−
Z ∗()



1

−1 ( ())− 


!

 is set equal to 
+

 to ensure that ∗ (∗ ()) = 0 as per the boundary condition (16).

Finally, Lemma 3 in Appendix A verifies that, given the audit schedule ∗ (·), the firm’s
reporting strategy ∗ (·) satisfies the second order conditions (12).
Equation (19) shows that a larger value of  corresponds to a lower value of ∗ ()  that is,
greater underreporting in equilibrium. This makes sense: a large  corresponds by definition

to a low value of  which means a high marginal cost of an audit. Equation (19) also implies

that, in any equilibrium in which there is some underreporting,  must be greater than 1.

Finally, equation (19) pins down the report of the highest income firm,

∗() = −1 (1) 

This expression shows that, as the marginal cost of funds increases, the interval of the reports

being audited shrinks. All strategic firms report in that interval, and thus as that interval

shrinks, strategic firms become a greater percentage of the set of firms who report in that

interval. Only honest firms report above that interval.

If  is log-concave then we can further characterize the equilibrium strategies. Log-concavity

means that () () is decreasing in . The assumption of log-concavity is relatively mild,

in that many common cumulative distribution functions are log-concave, including: the Uni-

form, the Power distribution, the Normal, the Gamma, the extreme value, the exponential,

the Pareto, and many others. (For a collection of results related to log-concave distributions

see Bagnoli and Bergstrom 1989). If  is log-concave then we can show that the amount of

underreporting is increasing in the true income.

Lemma 1 (increasing cheating) If  is log-concave then −∗() is increasing in , that
is, strategic firms with higher true tax base underreport by more.

Proof. See Appendix A.

6 CalibrationMethodology for the Tax AuditingModel

For the purpose of calibrating the model we specialize the analysis to the case in which

the firms’ tax base is distributed according to a Power distribution. The c.d.f. of a Power
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distribution on [ ] is given by  () =
¡
−
−
¢
with   0. The power distribution is log-

concave, and its density can be decreasing or increasing depending on whether  is smaller or

greater than 1. The uniform distribution arises when  = 1 Despite being a one-parameter

distribution, the Power distribution will prove sufficiently flexible for the purpose of matching

our data.

Proposition 3 (Equilibrium of the auditing game with Power distribution) Suppose

the tax base of firms is distributed on [ ] according to a power distribution  () =
¡
−
−
¢



For any  ∈ (0 1) there exists an equilibrium of the auditing game. It is given by a reporting
strategy ∗ (·) and an auditing schedule ∗ (·) that solve:

∗ () = +


+ 1
(− )

∗ () = max

½


 + 

∙
1−

µ
+ 1



 − 

− 

¶¸
 0

¾
 =

1

(1) − 1
 =

 (1− )

(1− ) 


Proof. See Appendix A.

We want to use the equilibrium strategies in Proposition 3 to calibrate the unknown para-

meters   .

For realism’s sake we need to introduce audit classes in our calibration exercise. This is

because it is unrealistic that a huge firm (automobile production, say) could report just one

employee and fool the auditor into thinking that it is a mom-and-pop store. Therefore we

need to incorporate the possibility that firms are observably different to the auditor, so that

a report of 1 worker from General Motors triggers an audit for sure, whereas a report of 1

worker from a mom and pop store might not. We therefore introduce audit classes. An audit

class is made up of firms which share some characteristic observable to the auditor (legal

structure, location, productive sector, energy consumption etc.), different from the firm’s

report, that is correlated with their true tax base. Formally, an audit class  is defined by

three parameters known to the auditor:  and  the lowest and highest possible true types

of firms in the class, and the parameter  which characterizes the Power distribution within

that class. No firm in audit class  can report below  (implicitly, because the auditor audits

such underreports with probability 1) but firms are otherwise free to report anywhere within

( )  In this formulation, the size of the interval ( ) implicitly measures the auditor’s

residual uncertainty about a firm’s true tax base, after all available (non-report) information

has been evaluated to assign the firm to an audit class. General Motors is presumably in

an audit class where  equals thousands of employees, and so this formulation avoids the

possibility of GM reporting very few employees.
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Unfortunately, we may often not know what audit classes the auditor assigns firms to. There-

fore, in our calibration exercise we choose to be crude in the way we incorporate audit classes.

We define an audit class as all firms which would be audited with positive probability if they

report within a given interval (). We can then partition the set of reports into con-

tiguous non-overlapping intervals ()  (+1+1)   thus partitioning the entire set of

reports into distinct audit classes. In this way, each audit class is associated with an interval

of audited reports.6

Having identified an audit class with an interval ()  we now we detail the methodology

used to infer all relevant parameters of the audit class. The procedure is based on matching

moments from audit data. The first moment is the fraction of audited firms who report in

the interval () and are found not to have underreported.7 According to the model, the

ratio of honest to strategic firms among those audited is given by


R


∗ ()  ()

(1− )
R


∗ ()  (∗−1 ())
(21)

This ratio should equal the ratio of honest to strategic firms in the sample of audited firms,

which we denote by 1

The second moment is the average number of employees reported by audited firms who report

in ()  Call this 2 In the theory, this quantity is given by

(1− )

Z 



∗ ()  () + 

Z 



 ()  (22)

The third moment we match is the average underreport of audited firms. We call this quantity

3 The theoretical expression that corresponds to this amounts isZ 



[− ∗ ()]  ()  (23)

6This definition is convenient for calibration purposes, but it is somewhat unnatural from the viewpoint

of the auditors. For the auditors, an audit class is defined in terms of some observable characteristic, which

then gives rise to a specific distribution of true tax bases. From their perspective, our construction amounts

to imposing that the distribution of true tax bases in the audit class which we associate with () is

in fact ( )  where    because  = ∗ ()   From the viewpoint of an auditor then, the

structure we have given results in separate audit classes each characterized by a Power distribution with

support ( ) and parameter  Each interval ( ) partly overlaps with the next interval (+1 +1) 

but in equilibrium no strategic firm in audit class  and true tax base in (+1 ) reports above = +1.
7This fraction should be close to, but smaller than  the unconditional fraction of honest firms in the

model. This is because a firm is in our sample only conditional on being audited. In the model, the fraction of

firms that are honest conditional on being audited is smaller than , because the honest firms with a high tax

base report (truthfully) a large number and are not audited. Therefore, strategic firms are disproportionally

present among the firms being audited.
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Equations (21)= 1, (22)= 2, and (23)= 3, together with the condition ∗ () = form

a system of four equations in four unknowns. After substituting for ∗ (·) and ∗ (·) from
Proposition 3 and after much algebra (detailed in Appendix A.2), the system of equations is

reduced to the following.



(1− )
¡
+1


¢ = 1

(1− ) (1 + 1) (+ 3) = 2 (24)

( − )





 + 1
= 3

The parameters 1 2 3 will be empirically observable, and the unknown parameters

are    The system of equations (24) represents our calibration tool. If a solution exists

to this nonlinear system of equations, then the solution identifies the “deep parameters”

of the model without error. If a solution does not exist, then we may look for estimatesb b b which minimize some weighted sum of the distances between expression (21) and 1,

expression (22) and 2, and expression (23) and 3

7 Illustrative Application: The INPS Auditing Data

We view the preceding analysis as developing a replicable, almost mechanical procedure for

the structural estimation of decentralized auditing games: measure (the auditors’ incentive

scheme using Proposition 1), cut (build a model and solve for the equilibrium, as we did in

Section 5), and fit (calibrate the model using audit data). In this section we illustrate the

procedure by applying it to the INPS data.

7.1 The INPS data

Our data comes from labor-tax auditing of Italian firms. In Italy it is the employers’ respon-

sibility to pay labor taxes on its employees. These taxes are analogous to Social Security

contributions in the US, but they are higher (they hover around 40% of the worker’s gross

compensation).8 Every year the Italian Social Security Institute (INPS) inspects a number of

firms in order to verify that they paid their labor taxes. An employer found underreporting

is assessed a fine equal to the money underreported plus 33% of it. Our dataset is composed

of the universe of INPS audits in 2000-2005, except for two sectors: agriculture and self-

employed workers.9 This unique dataset was created in order to get some insight into labor

8For most workers these taxes amount to 40-42% of gross wages, but they are 38% for workers classified

as “artisans,” and only 23% for specific types of workers who are not permanently employed. Our data does

not distinguish among these various types of workers.
9These two sectors are subjected to a separate auditing process on which we have no data.
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tax evasion and undocumented work.10

Each observation is an audit. Audits are carried out by auditors who select the firm out

of a large list of firms, visit the firms’ location and check for violations. The auditor can

interview the workers he finds and check administrative and accounting records. For each

audit, the data consists in some firm characteristics (number of declared workers, production

sector, regional location) and some characteristic of the audit and its outcome (length of the

time window that is the object of audit,11 the amount of underreported taxes, the number

of undeclared workers detected). In all, we have 474,645 inspections developed on 396,065

different firms, an average of around 80,000 per year.12 Most of these firms (90%, or about

430,000) report 10 or fewer workers, reflecting the well-known prevalence of small firms in

Italy.

To match the model to the data we need measures of what income the firms reported and of

what evasion was found, if any. For evasion detected we will use two related variables. The

variable amount of evasion (evasioni) is the amount of money that INPS assesses it is owed,

if any. The variable success (risultato) is a dummy created based on the previous variable,

and it equals 1 if the audit resulted in an assessed fine in any amount. The dataset does

not contain the reported income, but it contains the number of employees the firm reported

having. We will use this as a proxy for reported income. The variable sectors (settori) codes

the ATECO industry sector codes to which the audited firm belongs.13

In order to be consistent with the theoretical framework of optimal auditing, our sample

should only contain audits which are discretionarily initiated by INPS with the goal of

uncovering underreports. However, the administrative process that generates our data is

multi-faceted, and thus we need to decide what to do with audits that are not discretionar-

ily initiated by INPS with the goal of uncovering underreporters. Our strategy will be to

exclude them from the sample. We detail this process in Appendix B.1. It is important to

note that the rationale for eliminating non-discretionary audits is not (only) to err on the

side of caution; this strategy also has a theoretical justification, because eliminating these

audits does not invalidate the analysis we intend to carry out. As mentioned on page 8 when

we discussed the interpretation of  these excluded audits may influence the behavior of the

firms, but that will not matter for our analysis: the impact of the extraneous audits folds

into the definition of  and Proposition 1 holds regardless of their presence.

After eliminating non-discretionary audits we are left with 176,230 discretionary audits which

10For a more precise description of the data and of the process of building the dataset, see Di Porto (2009).
11Every audit examines only a specific time window, say, the two most recent years of activity. If a firm is

audited twice, the window of the second audit cannot by law overlap with the first audit’s.
12Since there are around 1,660,000 Italian firms, this means that INPS audits almost 5% of them every

year.
13There are nine such sectors, with the numbers from 1 to 9 corresponding to, respectively: Energy,

Water, Gas; Mining and Chemical Industries; Manufacturing and Mechanical Industries; Food and Textiles;

Construction; Wholesale and Retail Trade; Transportation; Finance and Insurance; and, finally, Services.

They correspond to the 1981 version of the ATECO codes.
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are initiated by INPS based only on documentary information about the firm. These audits

are allocated following a strategy devised by the top management at INPS. The strategic

guidelines, which are updated throughout the year, direct auditors in a given region to focus

on specific types of businesses, such as truckers, or ice-cream parlors, etc. These discretionary

audits correspond to the auditing activity contemplated in the auditing models. Therefore,

we will restrict attention to these audits. To the extent that the auditing strategy is centrally

designed, our model with a single auditor fits well the institutional environment.14 There

is no explicit statement, however, about INPS’s objective function:it is left to us to infer it

empirically from the data.

Table 1 reports the summary statistics. We divide the 176,230 audits into audits of small

firms, which we define as firms which declare 10 or fewer employees, and audits of large

firms. Small firms represent a very large fraction of all Italian firms (and roughly 90% of

our entire sample). For 175,991 of these firms we know their sector (the remaining 239 are

missing the sector variable). Among these firms we have 151,806 small firms and 24,185

large firms. Audits of small and large firms differ in the industry composition, as one would

expect, with small firms being a larger fraction of the audited population in certain sectors.

The probability of a successful audit is smaller for small firms: among all 176,230 audits,

40% of the small firms audit result in a fine being paid, and 54% of large firms audits. When

evasion is measured by the amount of the fine, there is more evasion detected in the large

firms sample. Moreover, when an evasion is detected, the fine paid averages 17,683 euros for

small firm audits and 108,297 euros for large firms audits.

The distribution of reported sizes is given in Figure 1.

7.2 Using Proposition 1 to identify auditors’ objective function

We check whether there is any objective  which is being equalized across audit classes.

Inspired by Example 5, we conjecture that this objective is the detection of a cheater, inde-

pendent of the amount of cheating.15 Accordingly, the dependent variable in Table 2 is the

fraction of audited firms which are found cheating in a given region/year. The independent

variables are the fraction of audited firms in each region/year which belong to each sector. In

specification (2) we control for reported firm size, to check whether the return from auditing

large firms is different. In both specification we introduce region fixed effects to capture the

14While on paper the auditing strategy is decided centrally, the reader may wonder about the incentives of

individual auditors to potentially subvert the centrally-decided strategy. Individual auditors are compensated

on a fixed wage plus a “productivity premium” based on the amount of unpaid taxes recovered in their region.

We view these incentives as rather low-powered for two reasons. First, an individual auditor has a negligible

effect on how much is recovered in his entire region. Second, as a practical matter the auditor’s union

has always resisted the notion that the productivity premium might be withheld. Perhaps as a result, the

productivity premium has historically never been denied to any region.
15In the language of Section 3 we posit that  ( ) = 1 if    and zero otherwise.
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Small Firms Large Firms

Sector 1: Energy, water, gas
453

(0.3%)

83

(0.3%)

Sector 2: Mining and chemical industries
1,600

(1%)

656

(2,7%)

Sector 3: Manufacturing and mechanical industries
8,563

(5.7%)

3,303

(13.7%)

Sector 4: Food and textile
16,807

(11.1%)

4,419

(18.3%)

Sector 5: Construction
35,427

(23.3%)

6,910

(28.6%)

Sector 6: Wholesale and retail trade
69,385

(45.7%)

5,087

(21%)

Sector 7: Transportation
1,587

(1%)

775

(3.2%)

Sector 8: Finance and Insurance
5,927

(3.9%)

1,684

(6.7%)

Sector 9: Services
12,057

(7.9%)

1,268

(5.2%)

Total
151,806

(100%)

24,185

(100%)

Success of audit (Risultato)

(std. dev.)

0.40

(0.49)

0.54

(0.50)

Amount of evasion (Evasioni) in euros

(std. dev.)

6,953

(35,950)

57,601

(306,704)

Amount of evasion conditional on  0

(std. dev.)

17,683

(55,650)

108,297

(413,972)

Number of employees (Dipendenti)

(std. dev.)

3.09

(2.35)

51.13

(346.32)

Table 1: Summary Statistics. Large firms are those with more than 10 reported employees.
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Figure 1: Distribution of reported number of employees.

idea that the game is being played within region, so an inspector from one region cannot

arbitrage by auditing a firm from another region.

According to the theory, whatever heterogeneity determines the variation in the dependent

variables within a region, observables should not predict the probability of finding a cheater.

Table 2 is broadly supportive of this statement since no sectoral variable is significant in

either specification (1) or (2). In fact, a Wald test carried out on specification (2) does

not reject the hypothesis that the sectoral coefficients are jointly equal to zero. However,

the coefficient on the dummy “large firm” is significant in specification (2), indicating that

firms which report more than 10 employees are more likely to be found cheating. This is an

indication that firm size matters.

The large R2 in Table 2 is attributed to region fixed effects. This is in line with the the-

ory: institutional considerations suggest that auditors should not be able to arbitrage across

regions, and the data bear this out. >From a statistical viewpoint, we learn that there is

variation to be explained, but sectors don’t explain it; in this sense, the significance of region

fixed effects serves as a sort of “placebo test” for the non-significance of sectoral variables.

Albeit at a very exploratory level, Table 2 reveals that firm size matters. To further explore

the question of firm size, we split the sample into large and small firms. Moreover, we make

each individual audit into a data point, with the result that now we have a very large number

of observations. Table 3 reports the results for this regression. The dependent variable in

the regression of Table 3 is the success variable (risultato). According to our test, if the firm

maximizes the probability of detecting evasion, then the probability of detection should be
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Table 2:
Dependent Var: Fraction of Audited Firms Found Cheating

VARIABLES (1) (2)

Fraction of audits in sector 1 2.33 1.39

(0.121) (0.489)

Fraction of audits in sector 3 -0.43 1.13

(0.776) (0.485)

Fraction of audits in sector 4 -1.14 0.99

(0.391) (0.389)

Fraction of audits in sector 5 -0.86 1.00

(0.512) (0.459)

Fraction of audits in sector 6 -1.12 1.00

(0.431) (0.489)

Fraction of audits in sector 7 2.81 2.50

(0.242) (0.310)

Fraction of audits in sector 8 -1.21 0.14

(0.445) (0.939)

Fraction of audits in sector 9 -1.23 0.98

(0.389) (0.443)

Large firm indicator 1.50***

(0.000)

Time trend -0.02* -0.01

(0.066) (0.224)

Constant 1.43 -0.73

(0.296) (0.588)

Region Fixed Effect yes yes

Observations 120 120

R-squared 0.2411 0.387

Number of id 20 20

Robust pval in parentheses.

*** p0.01, ** p0.05, * p0.1
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the same for any reported number of employees (dipendenti) and for any sector (the variables

sector#). In our empirical specification we allow for additional flexibility by controlling for

the interaction between number of employees and sectors (the variables sector# * employees).

This allows for the probability of detection to vary with the number of employees in a sector-

specific way.

Focusing first on small firms (column 1), we find that, despite the flexibility allowed by

our specification, few of the coefficients (4 out of 20) are significantly different from zero

at the 10% level. Furthermore, the R2 coefficient is very small (0.01). We interpret this

widespread lack of explanatory power as evidence that most of the independent variables in

our regression do not help improve the probability of detection. One must not overemphasize

this interpretation, because the F statistic indicates joint significance of the independent

variables. Nevertheless, Table 3 does point to the difficulty for an auditor of predicting the

probability of the success of an audit based on the variables we have, so that any audit

is perceived as “equally likely to succeed” by the auditor. Based on Proposition 1, this is

consistent with the assumption that auditors maximizes the probability of a successful audit,

and that INPS does not have, or does not make strategic use of, the power to commit so that

the game is indeed one of decentralized auditing. In Table 7 of Appendix 7.2, we verify the

robustness of this finding by controlling for region, for a time trend, and to restricting the

population to firms which report 5 or fewer employees. Of note, the region coefficients are

generally significantly different from zero, which again we interpret as a successful “placebo”

test.

Column (3) is identical except that the dependent variable is amount of evasion (evasioni),

the amount of money that INPS assesses it is owed. According to Proposition 1, if auditors

maximize detections, then under a mild regularity condition there should be a positive cor-

relation between number of reported employees and amount of the misreport, i.e., firms who

report more workers also misreport by more. The coefficient on the number of employees

is positive and close to significant at the 10 percent level, and moreover coefficients on the

interaction terms are all positive and most are robustly significant. This evidence supports

the finding that firms who report more employees also underreport by more. Also, to the

extent that most coefficients on the terms involving the number of employees are not zero,

column (3) supports the conclusion that auditors are not maximizing the amount of evasion

detected.

Summing up, for the “small firms” sample, which comprises about 90% of the firms in Italy,

the empirical results are generally in line with the theory. The results suggest that INPS

behaves, in the aggregate, as a group of auditors which maximize the probability of finding

tax cheaters in a decentralized way.

Large firms are different: from the summary statistics we know that, on average, the prob-

ability of a successful audit is larger for large than for small firms ( 54% versus 40%). This

fact was also picked up in Table 1. This implies that, in principle, an auditor could substitute
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Table 3:
Dependent Var: Detection Success and Amount of Evasion

VARIABLES (1) Success (2) Success (3) Evasion

Small firms Large firms Small firms

Number of employees 0.01 0.00*** 808.54

(0.293) (0.003) (0.106)

sector 2 0.03 0.07 -876.32

(0.425) (0.246) (0.685)

sector 3 0.03 0.17*** -17.19

(0.405) (0.002) (0.991)

sector 4 0.07** 0.10* -788.27

(0.045) (0.061) (0.579)

sector 5 0.04 0.09 -1,072.68

(0.237) (0.102) (0.434)

sector 6 0.02 0.11* -1,552.09

(0.474) (0.055) (0.249)

sector 7 0.26*** 0.18*** 4,871.02**

(0.000) (0.002) (0.038)

sector 8 0.09** 0.29*** -2,936.28

(0.018) (0.000) (0.222)

sector 9 -0.02 0.17*** -3,803.10***

(0.585) (0.004) (0.006)

sect2 * employees 0.01 0.00 1,471.74*

(0.364) (0.169) (0.053)

sect3 * employees 0.01 -0.00** 1,443.75**

(0.483) (0.020) (0.013)

sect4 * employees 0.01 -0.00** 1,162.01**

(0.431) (0.027) (0.028)

sect5 * employees 0.01 -0.00 603.42

(0.585) (0.801) (0.237)

sect6 * employees 0.01 -0.00* 325.63

(0.244) (0.055) (0.519)

sect7 * employees -0.00 -0.00 1,958.26**

(0.821) (0.650) (0.013)

sect8 * employees 0.01 -0.00*** 3,355.36***

(0.443) (0.000) (0.002)

sect9 * employees 0.03** 0.00** 1,086.04**

(0.019) (0.045) (0.048)

Constant 0.29*** 0.41*** 3,525.65***

(0.000) (0.000) (0.008)

Observations 151,806 24,185 151,806

R-squared 0.014 0.013 0.017

Robust pval in parentheses. *** p0.01, ** p0.05, * p0.133



a search of a small firms with a search of a large firm and increase his probability of success.

One might attribute this difference to the (unobserved) cost of carrying out an audit in a

larger firm. This interpretation is not consistent with the evidence presented in Table 2,

however. The regression in Table 3 column (2) is identical to column (1), except that it is

performed on the sample of firms which report more than 10 employees. First, we notice

that the coefficients of the variable number of employees, as well as those of the variables

interacted with number of employees, are very small. This means that size per se does not

appreciably raise the probability of a successful audit above the 41% level (the constant in

the regression which, incidentally, is about equal to the average success rate among small

firms). Rather, the “excess return” from audits comes through some of the sector dummies.

This observation casts doubt on the interpretation that the difference in success rates of

audits is due to the larger cost of performing audits on bigger firms. Adding to the puzzle,

the sector with the biggest “excess return” to an audit is sector 8, corresponding to Finance

and Insurance. It is possible that the cross-sector differences in returns to an audit that are

present in the large firm sample reflect an unobserved “complexity of audit” cost that varies

across large firms in different sectors. It is difficult to rule out the existence of such unob-

servable differences; however, we saw no evidence of them in the small firms sample. In our

own reading, the evidence from column (c) provides weak support for the no-commitment,

success-maximizing model within the large firm population.

Separately from the results in Tables 2 and 3, including the “placebo” tests, is the hypothesis

persuasive that auditors maximize the probability of finding a cheater, at least among small

firms? We think so. First, this compensation scheme is “simple,” such that it could actually

be used in a real-world compensation scheme. Second, it is “plausible” in the sense that if a

principal seeks to deter tax evasion, it can be better for that principal to reward his agents

for detecting cheaters, rather than for finding large underreports (see Example 1).

7.3 Backing out the calibrated parameters

The system of equations (24) is our calibration tool. We think of 1 2 3 as empiri-

cally observable parameters, and we want to know which values of the unknown parameters

   are compatible with any given constellation of these observable parameters. If a so-

lution exists to this nonlinear system of equations, then the solution identifies the “deep

parameters” of the model without error. If a solution does not exist, then we may look for

estimates b b b which minimize some weighted sum of the distances between expression (21)
and 1, expression (22) and 2, and expression (23) and 3

We choose to divide our sample into three audit classes: firms which report in the intervals

(0,10), (11-25), and (26-50). We do not pursue the analysis of audit classes with reports

larger than 50 employees since these reports are only about 2% of our sample.

To illustrate how the calibration exercise is implemented, consider for example the audit
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Class 0-10 Class 11-25 Class 26-50

 062 05 047

 048 061 1

 4 88 468 548

 12 28 5438

Table 4: Calibrated parameters.

class ( = 0 = 10)  which is composed of all the firms who have true tax base between

1 and   10 and which are audited only when they report below 10. In this case we can

compute that 1 the ratio of honest to strategic firms among the firms which report less

than 11 employees in our data, equals 0604We have 2 the average number of employees

reported by firms who report in (0 10)  is given by 3.09 employees. Finally we need a value for

3 the average number of underreported employees. This we do not have in the data, but we

approximate it by taking the total amount evaded conditional on evading a positive amount

(17,683 euros), and dividing it by 26,500 (the gross average salary in Italy in 200716); we thus

obtain a proxy for 3 which in this case equals 0.67 “employee-equivalent underreports.”

Given these parameters, the system of equations (24) can be solved numerically to yield

[ = 0621 51  = 4 874  = 0484 91]  Details about the numerical solution are provided in

Appendix C. The computed value of means that the fraction of honest firms is 62%, slightly

higher than the 60% of firms which are found not to cheat when audited. The difference is

due to the fact that strategic auditing hits precisely those firms which are more likely to

misreport. The parameter  is best understood in terms of the fraction  (+ 1)  which

represents the fraction of the true tax base reported by strategic firms. In this case this

fraction equals 0.83, which means that strategic firms report 83 percent of their true tax

base. The highest true tax base in the audit class (unobserved because firms who report this

much are not audited) equals 10· (+ 1)  = 12 Finally, the fact that   1 implies that

the density of true tax bases is decreasing.

The samemethodology can be applied to audit classes ( = 11 = 25) and ( = 26 = 50) 

In this last audit class, unlike in the first two, solving the system of equations (24) yields a

parameter  which leads to a poor fit of (25) to the data. We explain how we dealt with this

issue in Appendix C. Finally, all the parameters recovered through this calibration exercise

are presented in Table 4.

7.4 Fit of the calibrated model

Given the parameters collected in Table 4, we plot the predicted distribution of reports by

audited firms, and compare it to the distribution of reports in our data. This is a meaningful

test of fit because the calibration procedure was not designed to match the shape of the report

16“Domanda di lavoro e retribuzioni nelle imprese italiane”, Rapporto Unioncamere 2008, page 23.
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distributions, but rather certain moments of it. Therefore, the forthcoming comparison can

give us a sense of how well our model (including the restriction to the Power distribution)

fits the data.

The equilibrium probability of observing an audit of a firm which reports  is given by

∗ () ·
∙
(1− ) 

¡
∗−1 ()

¢ ∗−1 ()


+  ()

¸
 (25)

The first multiplicative term represents the probability of being audited conditional on re-

porting  The term in brackets represents the density of firms which report  which is a

mixture of strategic and honest firms. Figure 2 plots this function as the green line against

the histogram of the empirical distribution of reported sizes. For small firms and for medium

firms the fit is rather good, particularly considering that our calibration procedure was not

designed to match the shape of this histogram but rather just one moment, its average. For

large firms (reports between 26 and 50) the fit is not good when we apply the parameter

configuration with   1. The fit becomes better when we apply the parameter configuration

obtained by relaxing the matching of 2 in (24), which in the figure is referred to as “relaxed

identification.” We refer to Appendix C for details about the difference between third and

fourth panel.

Figure 2 also plots the predicted distribution of true tax bases (the orange curve). As

expected, this curve extends further to the right than the histogram, up to some   

This is because the model predicts that some firm have a tax base greater between and .

Among these firms, the strategic ones will report between  and  and they will be audited

with positive probability, so their audits will show up in our histogram. The honest among

these firm will report above  , and their audits will not show up in the histogram.

8 Counterfactual Exercises With INPS Data

8.1 Counterfactual I: compute the amount of tax evasion

In this section we compute the revenue raised in equilibrium as a fraction of the total revenue

theoretically achievable if every firm paid their taxes in full.

The maximal amount of tax revenue theoretically achievable in our model is what all firms

would pay if they were honest, which isZ 



 ·  ()  (26)
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Figure 2: The histogram represents the empirical percentage of audited firms who report a

certain size; the green line the predicted percentage of audited firms by reported size; the

orange line the predicted distribution of true firm size.

The money actually raised in equilibrium is given by



Z 



 ·  ()  + (1− )

Z 



 ·  ¡∗−1 ()¢ ∗−1 ()




+(1− )

Z 



∗ ()
£
(+ 033)

¡
∗−1 ()− 

¢¤ ·  ¡∗−1 ()¢ ∗−1 ()


 (27)

The first addend is the amount of taxes raised from honest firms. The second addend is the

amount of taxes declared up-front by strategic firms. The the third addend is the money

raised from audited cheaters.

At this point we could simply use the calibrated parameters from Table 4, plug them into the

strategies derived Proposition 3, and evaluate these expressions numerically. However, this

would not be fully satisfactory because the resulting expression for ∗ () would be too large
relative to ballpark estimates. Indeed, while detailed data about ∗ () are not available,
crude statistics that are publicly available suggest that only 2% of firms who declare less

than 10 employees are audited every year. According to our model, however, the probability

of auditing must be in the order of 30% to generate the comparatively mild underreporting
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Class 0-10 Class 11-25 Class 26-50b 687 845 695

Amount raised from honest firms  · 157  · 697 · 1608
Amount raised from strategic firms

in equilibrium
(1− ) 132 (1− ) · 655 (1− ) · 1526

Table 5: Calibrated parameters, and counterfactuals.

found in the data. This observation raises the question of why Italian firms are so compliant,

given the low probability of being audited and the mild penalties for being found in violation.

We do not have an answer to this question except by resorting to unmeasured psychological,

legal, etc. costs of being found in violation of the tax code. So in what follows we will

calibrate a new parameter, b which captures the penalties plus the non-monetary costs of
being found cheating.

We explain in Section 6 how we calibrate the parameter b (essentially, b is chosen so as to
generate the observed amount of underreporting given an aggregate amount of yearly audits

equal to around 2% of the total population of firms). Our calibration yields values for b above
6. This means that the perceived cost for being found cheating is estimated to be more than

6 times the amount underreported. This is a very large number compared to the monetary

fine which is 0.33. We will return to this issue in the conclusions.

Plugging our calibrated parameter b into the expression for ∗ () yields a “realistic” auditing
strategy. We then compute values for the money raised in equilibrium (expression 27) and for

the tax revenue theoretically achievable if all firms were honest (expression 26). The results

for all audit classes are presented in the table below.

Table 5 implies, for the 0-10 class for example, that the ratio of revenue actually raised over

maximal revenue achievable (expression 27 over 26) is given by

 · 157 + (1− ) 132

157
= 094

where we have used  = 062 from Table 4. This means that, despite the relatively modest

auditing budget and despite the decentralization problem, INPS is achieving 94% of the

maximal revenue achievable if all firms reported truthfully. Results for the other audit classes

are similarly high.

The root of this perhaps surprising result can be traced back to the raw data. For firms in

the (0 10) audit class 3 the average underreport, equals 0.67, meaning that the average

strategic firm in that class reports 0.67 fewer employees than it actually has. Moreover, 62% of

firms are actually honest, which means that the average number of underreported employees

is actually about 067 ·062 = 042 Since these firms have on average 3.1 reported employees,
and slightly more actual employees, on average these firms underreport less than 14% of their
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actual workforce. This modest amount of underreporting is consistent with the small margin

for improvement we find in our counterfactual exercise.

8.2 Counterfactual II: the costs of decentralization

In this section we relax the constraint that the auditing schedule be incentive compatible for

the auditors. We seek, instead, to identify the revenue-maximizing auditing schedule within

a class of “simple” strategies which are generally not decentralizable.

The class of strategies we focus on is composed of strategies all of which result in the same

number of firms audited in equilibrium. In this sense, all strategies in a class are equally

expensive in terms of resources. Moreover, every strategy in the class is “simple” in that it

is a step function of the reported tax base.

Definition 2 Fix  the number of firms to be audited, and denote b = (+b). The class
of simple strategies S () denotes the set of auditing strategies in which: (a) all reports below
some  are audited with the same probability  ≤ b ; (b) no reports above  are audited; (c)
exactly  firms are audited. The simple strategy in which  = b is referred to as the extremal
strategy.

Restricting attention to simple strategies rules out sophisticated strategies in which the audit

probability is finely modulated based on the report. Despite this limitation, we think simple

strategies are of special policy relevance precisely because of their simplicity.

A noteworthy strategy is the extremal strategy. This strategy audits all reports below a

threshold  with such high probability as to deter any cheating among the audited reports.

Indeed, the extremal strategy has been shown to be revenue-maximizing in a setup very

similar to ours (see Border and Sobel 1981, Macho-Stadler and Perez-Castrillo 1997). How-

ever, the extremal strategy is not necessarily revenue-maximizing in our setup: there may be

another strategy which raises more revenue using the same amount of audits. This is shown

in Example 6 in Appendix A.17 Therefore, it is an open question whether the extremal is

revenue-maximizing in our setup. We show in this section that, given our calibrated para-

meter values, the extremal strategy is revenue-maximizing among all simple strategies that

are as expensive as the equilibrium outcome in terms of auditing resources.

The strategic firms’ behavior under a simple strategy is characterized by a threshold b. Types
with tax base lower than b will report  (the minimum possible report) and pay  plus if

17The non-standard feature of our setup is the presence of the honest firms. Honest firms are not responsive

to auditing (they never cheat anyway), yet they soak up auditing resources. Therefore the presence of honest

firms dilutes the deterrence power of the auditing. Moreover, the extent of dilution depends on the distribution

of honest firms–it will be stronger around those report levels where honest firms are more concentrated.

Therefore the presence of honest firms shapes the optimal auditing schedule.
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Class 0-10 Class 11-25 Class 26-50b 0055 0045 0054

Amount raised from strategic firms

in equilibrium
(1− ) 132 (1− ) · 655 (1− ) · 1526

Amount raised from strategic firms

under the extremal strategy
(1− ) 147 (1− ) 680 (1− ) 1578

Table 6: Calibrated parameters, and counterfactuals.

they are audited they also incur a (subjective) cost
³b + 

´
(− ); types higher than b will

report  (or slightly above that) and pay  without ever being audited. Therefore the types

who choose to report  rather than  are those for whom + 
³b + 

´
(− ) ≤  henceb solves

 −  =
b (b− )  (28)

where we denote b = 
³b + 

´
 A simple strategy must meet the budget constraint, which

is the sum of audits of strategic and honest firms: the latter are audited when their tax base

is below  and so the budget constraint reads

 =  [(1− ) (b) +  ( )] (29)

Finally, the revenue raised by a simple strategy is given by

 = (1− )

∙
+  · (+ )

Z 


(− )  () +  ( − ) (1−  (b))¸+ E ()  (30)

When  corresponds to the Power distribution, we can use expressions (28) and (29) to

explicitly solve for  and b as a function of We can then express the revenue as a function
of  alone, and maximize it as a function of  Of course, only the portion of revenue raised

from strategic firms (the expression in brackets in 30) will vary with . The corresponding

pictures, one for each auditing class, are displayed in Figure 3; these pictures make use of

the calibrated parameters and set  equal to the fraction of firms audited in our data (see

Appendix E for details.)

The revenue in each panel of Figure 3 is increasing as  grows towards b  showing that revenue
increases as we approach the extremal strategy. This suggests that, among the set of simple

strategies which cost the same as the equilibrium strategy, the extremal strategy should be

revenue-maximizing.

However, we note that the revenue exhibits a discontinuity at  = b18 The presence of
18The existence of this discontinuity is instructive. The discontinuity is caused by two factors. First,

when  = b all firms report truthfully, while for any  ∈ [0b) a bunch of firms cheat and report  Still,
this discontinuity in behavior need not per se result in revenue discontinuities, since the firms’ payoffs is
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Figure 3: Revenue across different “simple strategies,” indexed by  In each panel,  ranges

up to 

this discontinuity requires the revenue raised from the extremal strategy to be computed

separately. This is done in Appendix E, and the results are reported in Table 6. Comparing

the third row in Table 6 with Figure 3 reveals the discontinuity in revenue at  = b  and
proves the next observation.

Conclusion 2 Given our calibrated parameters and setting an auditing budget equal to the

equilibrium one, the extremal strategy raises more revenue than any other simple strategy

with the same budget.

Comparing the second and third rows in Table 6 shows that the extremal strategy always de-

livers more revenue than the equilibrium strategy for the same amount of auditing resources.

Yet the improvement is small. Focusing on the amount raised from strategic firms, which

are the only ones whose report is affected by auditing anyway, the improvement from the

continuous at  = b  The firm’s payoff is continuous because at  = b a bunch of firms are indifferent between
reporting truthfully or cheating and risking the penalty b The revenue is almost the opposite of the firms’
payoffs, except the revenue is computed using penalty   b; therefore, revenue is not continuous at  = b 
Since   b, compared to the firms, the auditor strictly prefers to raise revenue through truthful reporting
rather than through the penalties imposed on the cheaters. This observation accounts for the discontinuity

in payoffs at  = b  The interest of this observation is that, when firms incur non-economic costs from
being audited and found in violation of the law, then the game between auditor and audited is no longer a

zero-sum game, and this has implication for the kind of audit strategies that are likely to be optimal in the

mechanism-design problem. In particular, relative to the zero-sum version of the mechanism-design problem,

there should be a preference for strategies that deter, rather than punish.
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commitment strategy is slightly above 10% for the 0-10 audit class (1.32 to 1.47), and smaller

still for the other audit classes. Moreover, both these amounts are quite close to the one ob-

tained from honest firms, which represents the theoretical maximum revenue obtainable. In

this sense, despite the fact that in the decentralized equilibrium the wrong objective function

is maximized, our calibration suggests that the amount of money left on the table is not too

large. Of course, this conclusion is true only given the equilibrium auditing budget. It is

possible that, were INPS to reduce the fraction of firms audited, the gains from moving to

an extremal strategy might be larger.

9 Conclusion

We view this paper as a first attempt to bring to data the theoretical literature on strategic

auditing. The goal is important because having a model that can claim to quantitatively

capture the strategic interaction between auditors and audited would allow us to (a) un-

derstand how well a given auditing policy is succeeding; and (b) to perform counterfactual

experiments of enormous policy relevance (think tax evasion).

We believe this paper makes progress along several fronts. First, the paper proposes a shift in

focus from a stylized one-auditor model with commitment to a more realistic many-auditors

model with incentives. Theoretically, decentralized incentives could be very complicated. In

practice, giving auditors complicated incentive schemes is challenging for an organization. So

how complicated decentralized incentives are in actual organizations is an empirical question.

In this paper we offered a test based on equilibrium behavior which can reject, or fail to reject,

hypotheses about the shape of the auditor’s incentives.

Second, the paper provides a method for recovering what the auditors’ incentives actually

are, based on audit (administrative) data. Third, in the special but important case of tax

evasion, the paper introduces a variant of existing models and a method to calibrate it based

on audit data. The method reads the data through the lens of equilibrium behavior and, in

so doing, accounts for the huge selection process that generates the data. The parameters

recovered through the calibration process allow us to perform counterfactual experiments.

When applied to the Italian data, the calibrated model seems able to capture accurately

the behavior of the auditors “playing against” the 90% of firms with 10 employees or less.

The model does less well on its ability to explain the game involving the 10% of firms

with more than 10 employees, in the sense that it is harder to make precise sense of the

auditor’s behavior vis a vis these firms. The model we calibrate contains two parameters, 

and b which capture respectively a reluctance on the part of firms to underreport taxable
income, and an overassessment (relative to the mere economic consequences) of the cost of

being caught cheating. In our calibration these parameters are assigned large values, which

we interpret as suggestive that other factors, besides mere economic calculus, influence the

42



firms’ decision to cheat on their taxes. We believe this finding is not an artifact of our

calibration procedure, but rather reflects a real economic phenomenon. The high estimate

of the “degree of honesty” of firms is in line with empirical work and lore in the taxation

literature suggesting that taxpayers behave as if they were overestimating the expected cost

of being caught cheating. If replicated in other datasets, this phenomenon will deserve further

attention.

A caveat to our counterfactual analysis, but not to the rest of the paper, is that when we

change INPS’s auditing strategy we keep fixed the distribution of true tax bases of firms

(which we obtain from the calibration exercise). Realistically we should expect that, if a

permanent change in auditing behavior was implemented, firms would respond by changing

the number of employees. Since we do not take this channel into account, our counterfactual

results should be interpreted as “short run” results.

On top of the novel results presented in the context of tax compliance and auditing, the paper

has the ambition of developing what we hope can become a replicable procedure for calibrat-

ing strategic auditing models: measure (the auditors’ incentive scheme using Proposition 1),

cut (build a model and solve for the equilibrium, as we did in Section 5), and fit (calibrate

the model using audit data). We believe that this procedure can be applied to other auditing

environments, but clearly this will not always be straightforward. A step of this procedure

which we think is likely to require “custom tailoring” is that, given any objective function for

the auditors, the procedure calls for solving the equilibrium of the auditing game. Solving

for this equilibrium may not be routine.
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APPENDIX (NOT FOR PUBLICATION)

A Omitted Proofs

A.1 Details of Example 5

Maximizing monetary returns of audits:

Reporting Strategy: firms underreport by  if  ≥  report 0 if  ≤  .

Auditing strategy:

 () =
1

2

µ
1− exp

µ
 − (1−  )



¶¶
The equilibrium is an application of results found in Erard and Feinstein (1994).

We now compute the parameter  so that the number of audits corresponds to 10% of firms

audited:

Z 1−

0

1

2

µ
1− exp

µ
− (1−  )



¶¶
+



2
(
1

2

µ
1− exp

µ
 − 1


¶¶
) = 01

 = 0669607

We now compute the revenue collected when this auditing strategy is used (tax collected +

fines):

 = 

Z 1

0



+(1− )


2

1

2

µ
1− exp

µ−(1−  )



¶¶
+

Z 1−

0

1

2

µ
1− exp

µ
 − (1−  )



¶¶
(2 +  ) 

+

Z 1−

0

2

µ
1− 1

2

µ
1− exp

µ
 − (1−  )



¶¶¶


= 017424

Maximizing detection

Reporting strategy: firms with income  report  = 
+1

.
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Auditing strategy:  () = 1
2

¡
1− ¡+1



¢¢

The equilibrium is an application of results derived in section 5.

We now compute the parameter  so that the number of audits corresponds to 10% of firms

audited

Z (+1)

0

1

2

µ
1−

µ
+ 1




¶¶µ
+ (1− )

+ 1



¶
 = 01

 = 0441 39

The revenue is calculated as follows:

 = (1− )

Z 
+1

0

[ ()

µ
 + (+ )

µ
+ 1


 − 

¶¶
+ ((1−  ()) )] ()  + 

Z 1

0



 = 017896

Lemma 2 If  is distributed on [ ] according to  () =
¡
−
−
¢
, then E () =  +



+1
(− ) 

Proof.

E () =

Z 



 () = +

Z 



(− )  () = +

Z 



(− )

µ
1

− 

¶

 (− )
−1



= +

µ
1

− 

¶



Z 



(− )

 = +

µ
1

− 

¶



Z −

0



= +

µ
1

− 

¶

 ·
Ã

+1

 + 1

¯̄̄̄−
=0

!
= +

µ
1

− 

¶


 + 1
(− )

+1
= +



 + 1
(− )

Lemma 3 Given the audit schedule ∗ (·), the firm’s reporting strategy ∗ (·) satisfies the
second order conditions (12).

Proof. From, 12, we need to show that (+ ) [00 () ( − ) + 20 ()] ≤ 0. We have

∗0 () = − 

 + 
exp

Ã
−
Z ()



1

(()− )


!
1

(()− )


47



∗00 () = − 

 + 
exp

Ã
−
Z ()



1

(()− )


!∙
1

(()− )
2
+





1

((()− ))

¸


We can then compute

00 () ( −  ()) + 20 ()

=


 + 
exp

Ã
−
Z ()



1

(()− )


!
( −  ())

∙
1

( ()− )
2
− 



1

( ()− )

¸


The sign of (00 () ( − ) + 20 ()) is the opposite as the sign of
³

1

(()−)2 − 


1
(()−)

´


Now, we have

1

( ()− )
2
− 



1

( ()− )
=

1

( ()− )
2
+


0
()− 1

( ()− )
2

=

0
()

( ()− )
2
 0

Thus reporting ∗ () is indeed a local maximum for a firm with true tax base . If any

other local maxima exist which do not satisfy the first order conditions, they must be at the

corners of the feasible report sets, either  = 0 or  =  But neither can be a local maximum,

for otherwise there would have to be at least one other solution to the first order conditions

between ∗ () and 0, or ∗ () and  whereas we know that ∗ () is the unique solution to
the first order conditions. Therefore, reporting ∗ () is also a global maximum for a firm

with true tax base .

Proof of Lemma 1.

Proof. Proving that −  () is increasing is equivalent to show that 
0
() ≤ 1. We have :


0
() =

 ()

 ( ())

>From decreasing hazard rate property we have

 ( ())

 ( ())
≥  ()

 ()


using the fact that  () =  (()), we get:

 ( ()) ≥  () 
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whence 
0
() ≤ 1.

Proof of Proposition 3.

Proof. >From (20) we get

∗0 ()
∗ ()− 

+

=
1

(1) ( − ) + − 

=
1

( − )

1

(1) − 1 

and integrating both sides yields

ln

µ


 + 
− ∗ ()

¶
= ln ( − )

1

(1) − 1 + 

where  denotes a constant of integration. Taking exponential on both sides leads to

∗ () =


 + 
− ( − )




where  = (exp) is a constant that will be computed momentarily and we denote

 =
1

(1) − 1 

Note that   0 because   1 Finally, from (19) we have

∗ () = +
1

(1)
(− ) = +



+ 1
(− ) 

The constant  is computed using the fact that ∗ (∗ ()) = 0. Rewrite this condition as



 + 
−

µ


+ 1
(− )

¶

= 0

whence  = 
+

³
+1

(−)

´
. Substituting back into the probability of auditing yields

∗ () =


 + 

∙
1−

µ
+ 1



 − 

− 

¶¸


Example 6 Let F be uniform on [0 1] Set  =  = b = 05 Assume  = 01, which means

that up to 10% of firms can be audited, and a fraction  of honest firms equal to 05

The “extremal strategy” is to audit with probability  =  = 05 all firms which report less
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than  = 02 Under this strategy the strategic firms in [0 02] will report truthfully, and

so 0.1 on average, while all others will report  Total revenue raised from strategic firms

equals  [02 (01) + 08 ] = 009. Total audits, including strategic and honest firms, under

this strategy are exactly 0.1.

Consider now the following simple strategy: audit with probability  = 04 all firms who

report less than  = 02222 Using (28), it follows that all strategic firms with type less thanb = 027778 report zero and so the average revenue from them is  (+ )
¡ 
2

¢
 while the

rest report  Total revenue raised from strategic firms is b (+ )
¡ 
2

¢
+(1− b)  = 0097

Total audits under this strategy are ( · b) (1− ) +  = 01

A.2 Deriving the System of Nonlinear Equations (24)

In this appendix we show how we go from the three equations (21)= 1, (22)= 2, and

(23)= 3, together with the condition ∗ () = to the system of equations (24).

Equation (21) reads


R


∗ ()  ()

(1− )
R


∗ ()  (∗−1 ())

=

R


∗ ()
¡
1

−
¢

 ( − )
−1



(1− )
R


∗ ()
¡
1

−
¢


¡
+1


¢
( − )

−1


=


(1− )
¡
+1


¢  (31)

Equation (22) reads

(1− )

Z 



∗ ()  () + 

Z 



 ()

= (1− )

Z 



∗ ()  () + 

Z 



∗ ()

µ


+ 1

¶

 ()

=

"
(1− ) + 

µ


+ 1

¶
#Z 



∗ ()  ()

=

"
(1− ) + 

µ


+ 1

¶
#Z 



∗ ()  ()

=

"
(1− ) + 

µ


+ 1

¶
#∙

+


+ 1

µZ 



 ()− 

¶¸
(32)

where the second integral in the second line reflects the change of variables  = ∗ () =
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+ 
+1

(− )   () = 
¡
+ 

+1
(− )

¢
= 

¡


+1
−
−
¢
=
¡


+1

¢
 () 

Equation (23) readsZ 



[− ∗ ()]  ()

=

Z 



∙
− − 

+ 1
(− )

¸
 ()

=

∙
1− 

+ 1

¸Z 



(− )  () =
1

+ 1

∙Z 



 ()− 

¸
. (33)

Equations (31), (32), and (33), together with the condition ∗ () = form a system of four

equations in four unknowns. This system is given by

+


+ 1
(− ) = 



(1− )
¡
+1


¢ = 1"
(1− ) + 

µ


+ 1

¶
#∙

+


+ 1

µZ 



 ()− 

¶¸
= 2

1

+ 1

∙Z 



 ()− 

¸
= 3

Substitute from the fourth into the third equation to get the equivalent system

+


+ 1
(− ) = 



(1− )
¡
+1


¢ = 1"
(1− ) + 

µ


+ 1

¶
#
[+ 3] = 2

1

+ 1

∙Z 



 ()− 

¸
= 3

51



Substitute from the second into the third equation to get the equivalent system

+


+ 1
(− ) = 



(1− )
¡
+1


¢ = 1

(1− ) [1 + 1] [+ 3] = 2

1

+ 1

∙Z 



 ()− 

¸
= 3

Use the formula E () =  + 

+1
(− ) to substitute into the fourth equation to get the

equivalent system

+


+ 1
(− ) = 



(1− )
¡
+1


¢ = 1

(1− ) [1 + 1] [+ 3] = 2

1

+ 1

∙


 + 1
(− )

¸
= 3

Eliminate the first equation by substituting into the fourth, to get the equivalent system



(1− )
¡
+1


¢ = 1

(1− ) (1 + 1) (+ 3) = 2

( − )





 + 1
= 3

which is the system of equations (24).
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B Ancillary Material Related to the Application to

INPS Data

B.1 Creating the sample

Our sample is determined as follows. First, we drop the roughly 171,000 observations in

which firms are audited in a month in which they declare zero workers. These are not audits

of self-employed workers, which as we mentioned do not appear in our data. Rather, these

are firms which closed down (or went bankrupt) before the month in which they are audited,

and who therefore report zero workers in the month in which they are audited. Unfortunately

we do not know what number of workers they did report before they closed down, so even if

we wanted to correlate the audit with their true report we could not do that. But, in fact,

in many cases a post-bankruptcy audit is not an audit aimed at uncovering underreports of

taxes, but rather part of a procedure aimed at recovering unpaid taxes (about which there is

no uncertainy in INPS’s records) out of the bankruptcy process. For both these reasons we

eliminate observations where dipendenti equals zero.

Next we use the variable origine to screen out several types of interactions between INPS

and the public which are not audits in the sense of our models. We keep in the sample only

the roughly 175,000 audits which are coded as controlli incrociati and mirate. These are the

audits that are discretionarily intiated by INPS with the goal of uncovering underreporters.

What is left out is, first, about 5,000 audits coded fallimenti which are initiated in connection

with bankruptcy and which we eliminate for the same reason mentioned above–these are

part of bankruptcy process and not true audits. Next, we have 27,000 interactions coded

scoperture which are triggered when INPS detects a mismatch between the number of workers

declared by the firm and the amount of taxes paid. This mismatch is not cheating in the

sense that our models intend it: a firm who wanted to cheat would underreport both the

number of workers and the taxes paid. Moreover, these audits are triggered automatically

and they are not discretionary. So we eliminate them from the sample. A third type of

anomalous audit is the almost 79,000 segnalazioni, “whistleblower audits” initiated following

a complaint, typically by an alleged employee who claims that they were not declared to the

tax authority–in other words, that the firm underreported its employee count. These audits

are (a) not discretionary, because INPS is required by law to follow up; and (b) they are

based on a piece of information (the whistleblower) which is not contemplated in auditing

models, including ours. Therefore, we eliminate whistleblower audits for our sample.
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B.2 Robustness checks for Section 7.2

Dependent Var: Detection Success

VARIABLES (1) Regions (2) Year (3) <5 employees

number of employees 0.01 0.01 -0.01

(0.353) (0.275) (0.564)

sector 2 0.05 0.04 -0.01

(0.229) (0.278) (0.862)

sector 3 0.04 0.04 -0.03

(0.286) (0.246) (0.494)

sector 4 0.08** 0.08** 0.00

(0.025) (0.020) (0.972)

sector 5 0.05 0.05 -0.01

(0.121) (0.123) (0.890)

sector 6 0.04 0.04 -0.04

(0.260) (0.298) (0.421)

sector 7 0.27*** 0.27*** 0.19***

(0.000) (0.000) (0.000)

sector 8 0.10*** 0.10*** 0.03

(0.008) (0.005) (0.601)

sector 9 -0.00 -0.01 -0.08*

(0.912) (0.786) (0.085)

sector 2 * employees 0.01 0.01 0.04

(0.402) (0.372) (0.130)

sector 3 * employees 0.01 0.01 0.04*

(0.490) (0.484) (0.051)

sector 4 * employees 0.01 0.01 0.05**

(0.388) (0.448) (0.027)

sector 5 * employees 0.01 0.01 0.03

(0.612) (0.580) (0.115)

sector 6 * employees 0.01 0.01 0.05**

(0.263) (0.252) (0.021)

sector 7 * employees -0.00 -0.00 0.04

(0.839) (0.820) (0.107)

sector 8 * employees 0.01 0.01 0.04**

(0.467) (0.484) (0.039)

sector 9 * employees 0.03** 0.03** 0.06***

Continued on next page
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Table 7 -

VARIABLES (1) (2) (3)

(0.019) (0.021) (0.003)

Region 2 0.08***

(0.000)

Region 3 0.19***

(0.000)

Region 4 0.02**

(0.029)

Region 5 0.15***

(0.000)

Region 6 -0.03***

(0.004)

Region 7 0.19***

(0.000)

Region 8 0.04***

(0.000)

Region 9 0.10***

(0.000)

Region 10 0.22***

(0.000)

Region 11 -0.10***

(0.000)

Region 12 0.16***

(0.000)

Region 13 0.05***

(0.000)

Region 14 0.13***

(0.000)

Region 15 0.06***

(0.000)

Region 16 0.20***

(0.000)

Region 17 0.09***

(0.000)

Region 18 0.25***

(0.000)

Continued on next page
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Table 7 -

VARIABLES (1) (2) (3)

Region 19 0.23***

(0.000)

Region 20 0.07***

(0.000)

Year -0.02***

(0.000)

Constant 0.18*** 40.85*** 0.33***

(0.000) (0.000) (0.000)

Observations 151,806 151,806 127,366

R-squared 0.034 0.018 0.011

Robust pval in parentheses. *** p0.01, ** p0.05, * p0.1
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C Numerical Solutions to the Nonlinear System of Equa-

tions (24)

C.0.1 Class below 10

Consider the audit class ( = 0 = 10)  which is composed of all the firms who have true

tax base between 1 and   10 and which are audited only when they report below 10. In

this case we can compute that 1 the ratio of honest to strategic firms among the firms which

report less than 11 employees in our data, equals 0604 We have 2 the average number

of employees reported by firms who report in (1 10)  is given by 3.09 employees. Finally

3 the total amount evaded conditional on evading a positive amount is 17,683 euros, which

translated into employee-equivalents yields 0.67 employees.



(1− )
¡
+1


¢ =
06

04

(1− )

µ
1 +

06

04

¶
067 = 309

10





 + 1
= 067

Solution is: {[ = 0621 51  = 4 874  = 0484 91]}

C.0.2 Class 11-25

For the audit class identified by audited reports in ( = 11 = 25), which represent about 9

percent of our sample, we have that 1 the ratio of honest to strategic firms equals 047053

We have 2 the average number of employees reported, is given by 15.39 employees. Finally

3 the total amount evaded conditional on evading a positive amount is 29,950 euros, which

translated into employee-equivalents yields 1.13 employees. Solving the system of equations

(24) yields [ = 0499 37  = 0607 88  = 4 684 0]  The highest true tax base in the audit

class (unobserved because firms who report this much are not audited) equals 11+ (25− 11)
(+ 1)  = 28



(1− )
¡
+1


¢ =
047

053

(1− )

µ
1 +

047

053

¶
(11 +  · 113) = 1539

(25− 11)




 + 1
= 113
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Rewrite slightly as



(1− )
¡
+1


¢ = 0886 79

(1− ) (1886 79) (11 +  (113)) = 1539

14


 + 1
=  (113)

Solution is: {[ = 0499 37  = 0607 88  = 4 684 0]}

C.0.3 Class 26-50

For the audit class identified by audited reports in ( = 26 = 50), which represent about 3

percent of our sample of audits, we have that 1 the ratio of honest to strategic firms equals

043057 We have 2 the average number of employees reported, is 36 employees. Finally

3 the total amount evaded conditional on evading a positive amount is 58,000 euros, which

translated into employee-equivalents yields 2 19 employees. Solving the system of equations

(24) yields [ = 0551 45  = 9 017 1  = 4 643 8] 

Solving the system of equations (24) yields



(1− )
¡
+1


¢ =
043

057

(1− )

µ
1 +

043

057

¶
(26 + 219) = 36

(50− 26)




 + 1
= 219

, Solution is: {[ = 0551 45  = 9 017 1  = 4 643 8]}
The parameter  being greater than 1 will lead to a poor fit of (25) to the data. What we

learn from this is that sometimes, matching the moments in (24) perfectly has a significant

cost in terms of fit. One way around this problem is to relax the matching of the moments in

(24). If we accept the second equation in (24) to equal 35 235 rather than 36, which seems

like a small cost, then (24) yields a solution which produces a better fit of (25) to the data.

This is done in the next subsection.

C.0.4 Class 26-50 relaxing 2 = 36

Here we follow a different procedure. We fix  = 1 whereby from the third equation in (24)

we get

24
1

1 + 1
=  (219)

58



Solution is:  = 5 479 5. Substitute this into the first equation



(1− )
¡
5 479 5+1
5 479 5

¢ = 043

057

Solution is:  = 0471 48 Substitute into the LHS of the second equation to get

(1− 0471 48)
µ
1 +

043

057

¶
(26 + (5 479 5 · 219)) = 35 235

So if we allow 2 to equal 35 235 rather than 36, then the parameter constellation we

identifies solves the “relaxed” system (24). The solution [ = 0471 48  = 5 479 5  = 1]

produces a better fit of (25) to the data. The implication is that, for this audit class, our

model underpredicts slightly the reported number of employees.

C.1 Plotting Expression (25)

We want to work out expression (25) in the case of Power distribution. Since ∗−1 () =
+ +1


( − )  we have


¡
∗−1 ()

¢ ∗−1 ()


=

µ
1

− 

¶



µ
+ 1


( − )

¶−1
+ 1



=

µ
+ 1



¶ µ
1

− 

¶

 ( − )
−1

=

µ
+ 1



¶

 () (34)

Then

∗ () ·
∙
(1− ) 

¡
∗−1 ()

¢ ∗−1 ()


+  ()

¸
= ∗ () ·

"
(1− )

µ
+ 1



¶

+ 

#
 ()

where

∗ () =


 + 

∙
1−

µ
+ 1



 − 

− 

¶¸


and

 () =

µ
1

− 

¶

 ( − )
−1


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D Details About Counterfactual Section I

In this appendix we describe how we compute b and then to compute expressions 27 over 26.b is set so as to match the fraction of firms audited in our model to aggregate statistics
available from INPS. In our model, the fraction of firms audited among those that report

between  and  is constructed starting from (25) and is given byR


∗ () ·
h
(1− )  (∗−1 ()) 

∗−1()


+  ()
i
R



h
(1− )  (∗−1 ()) 

∗−1()


+  ()
i


 (35)

Crude statistics that are publicly available suggest that every year about 2-3 percent of firms

who declare less than 10 reported employees are audited. When audited, we know from our

data that the average firm’s books are checked going back somewhat longer than 2 years.

This “backward looking” span of the audit increases the deterrence power of auditing; we

factor in this effect very crudely by setting the “effective” probability of auditing to 5 percent.

Therefore we set expression (35) equal to 5 percent. We substitute out for ∗ () and write
this condition asR



£
1− ¡+1


−
−
¢¤ · h(1− )  (∗−1 ()) 

∗−1()


+  ()
i
R



h
(1− )  (∗−1 ()) 

∗−1()


+  ()
i


=
 + 


005 (36)

We set  = 04 to capture an approximately 40% tax rate on gross wages, and we let 

range freely to achieve the desired equality. The parameter b so obtained will capture the
33% penalty on the amount underreported, plus additional costs (psychological, legal, etc.)

involved in being found in violation of the tax code. We expect therefore that b ≥ 033.
D.1 Ancillary derivations used to compute expression 27

Expression (27) reads



Z 



 ·  () 

+(1− )

Z 



£
 + ∗ ()

£
(+ )

¡
∗−1 ()− 

¢¤¤ ·  ¡∗−1 ()¢ ∗−1 ()




= 

Z 



 ·  () 

+(1− )

µ
+ 1



¶ Z 



∙
 + ∗ ()

∙
(+ )

µ
+ 1


( − )− ( − )

¶¸¸
·  () 
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Since ∗−1 () = + +1

( − ) and  (∗−1 ()) 

∗−1()


=
¡
+1


¢
 ()  (27) reads



Z 



 ·  () 

+(1− )

Z 



∙
 + ∗ ()

∙
(+ 033)

µ
+ 1


( − )− ( − )

¶¸¸
·
µ
+ 1



¶

 () 

= 

Z 



 ·  () 

+(1− )

Z 



∙
 + ∗ ()

∙
(+ 033) ( − )

µ
+ 1


− 1
¶¸¸

·
µ
+ 1



¶

 () 

= 

Z 



 ·  () 

+(1− )

Z 



∙
 + ∗ ()

∙
(+ 033) ( − )

µ
1



¶¸¸
·
µ
+ 1



¶

 () 

= 

Z 



 ·  ()  + (1− ) 

µ
+ 1



¶ Z 



 ·  () 

+(1− ) (+ 033)

Z 



∗ ()

∙
( − )

µ
1



¶¸
·
µ
+ 1



¶

 () 

Lemma 4
R


 ·  ()  =
¡


+1

¢ h
+ 

+1



+1
(− )

i
Proof. Z 



 ·  () 

=

µ
1

− 

¶



Z 



 · ( − )
−1



=

µ
1

− 

¶



∙Z 



( − )

 +

Z 



 · ( − )
−1



¸
=

µ
1

− 

¶



∙Z −

0

  + 

Z −

0

−1 

¸
=

µ
1

− 

¶



"
+1

 + 1

¯̄̄̄−
=0

+ 




¯̄̄̄−
=0

#

=

µ
1

− 

¶



"
( − )

+1

 + 1
+ 

( − )




#

=

µ
1

− 

¶

 ( − )


∙
 − 

 + 1
+ 

1



¸
=

µ
 − 

− 

¶



∙
 − 

 + 1
+ 

1



¸

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Since  = + 
+1

(− )  we can rewrite the above expression asµ


+ 1

¶



∙ 
+1

(− )

 + 1
+ 

1



¸
=

µ


+ 1

¶ ∙



+1

(− )

 + 1
+ 

¸
=

µ


+ 1

¶ ∙
+



+ 1



 + 1
(− )

¸


D.2 Audit class below 10

Solving equation (36) numerically based on the parameters calibrated in Section 6, we getb = 687. This means that the perceived cost for being found cheating is estimated to be 6.87
times the amount underreported.

The first addend of (27) is the amount of taxes raised from honest firms; using Lemma 2,

the first addend equals 
h
+ 

+1
(− )

i
=  · 3 918 7 =  · 1 567 5. Combining Lemma

4 with (34), the second addend of (27) equals (1− ) 
h
+ 

+1



+1
(− )

i
= (1− )  · 3

251 6; this is the amount of taxes paid by strategic firms.

Finally, the third addend of equation (27) is the money raised from audited cheaters and

equals (1− ) (+ 033) times the following:Z 10



04

687 + 04

µ
1−

µ
+ 1



 − 

− 

¶¶
× ( − )

µ
1



¶
·
µ
+ 1



¶ µ
1

− 

¶

 ( − )
−1



We set the following values as definitions into the Scientific Word solver:  = 4 874;  =

0484 91;  = 12;  = 0 and solve numerically. The integral is evaluated to be equal to

2 813 2 × 10−2 Therefore the third addend is equal to (1− ) (+ 033) (002813). The

total money raised from strategic firms is the sum of the second and third added, and after

substituting  = 04 this amount equals

(1− ) 1 321 2
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D.3 Audit class 11-25

The relevant parameters for this class are [ = 11  = 0499 37  = 0607 88  = 4 684 0] 

The highest true tax base in the audit class (unobserved because firms who report this much

are not audited) equals 11 + (25− 11) (+ 1)  = 28 = 

Probability of being audited about 2%, double it to 4%.

Replace 0.05 with 0.04 in equation (36) and solve numerically to get b = 8447.
The first addend in (27) is the amount of taxes raised from honest firms; using Lemma 2, it

equals 
h
+ 

+1
(− )

i
= ·17 427 = ·6 970 8. The second term is the amount of taxes

paid by strategic firms, and it equals (1− ) 
h
+ 

+1



+1
(− )

i
= (1− )  · 16 296 =

(1− ) ·6 518 4 (see Appendix D.1) for details on all computations in this Section). Finally,
the the third term is the money raised from audited cheaters and is equal to (1− ) (+ 033)

times

Z 25

11

04

8447 + 04

µ
1−

µ
+ 1



 − 

− 

¶¶
× ( − )

µ
1



¶
·
µ
+ 1



¶ µ
1

− 

¶

 ( − )
−1



Solving numerically yields (1− ) (+ 033) 0038

The total money raised from strategic firms in equilibrium is

(1− ) [ · 16 296 + (+ 033) (0038)]
= (1− ) [(04) · 16 296 + (04 + 033) (0038)]
= (1− ) · 6 546 1

D.4 Audit class 26-50

Solving equation (36) numerically based on the calibrated parameters in Section 6, we getb = 6954.
The first addend in (27) is the amount of taxes raised from honest firms; using Lemma 2, it

equals 
h
+ 

+1
(− )

i
= · 40 19 = · 16 076 .

63



The second term is the amount of taxes paid by strategic firms, and it equals (1− ) 
h
+ 

+1



+1
(− )

i
=

(1− )  · 380 = (1− ) · 15 2 

Finally, the third term is the money raised from audited cheaters and is equal to (1− ) (+ 033)

times

Z 50

26

04

6954 + 04

µ
1−

µ
+ 1



 − 

− 

¶¶
× ( − )

µ
1



¶
·
µ
+ 1



¶ µ
1

− 

¶

 ( − )
−1



Solving numerically yields (1− ) (+ 033) 0087

The total money raised from strategic firms in equilibrium is

(1− ) [ · 380 + (+ 033) (0087)]
= (1− ) · 15 264

E Details on Counterfactual Section II

Assume  has a Power distribution. Fix and consider the class of “simple” audit strategies,

each of which is characterized by b,  and  We want to get to a closed form expression for
the revenue (30) as a function of (known parameters and)  alone. To this end, we need to

express b and  as a function of  From the budget constraint (29) we get

(1− )

µb− 

− 

¶

+ 

µ
 − 

− 

¶

=




Using (28) to substitute for  −  yields

(1− )

µb− 

− 

¶

+ 

µ
b (b− )

− 

¶

=


µ
(1− ) + 

³b ´
¶µb− 

− 

¶

=


µb− 

− 

¶

=



³
(1− ) + 

¡
 ¢´

Hence, we have
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b−  = (− )

⎛⎝ 


³
(1− ) + 

¡
 ¢´

⎞⎠1

(37)

b = + (− )

⎛⎝ 


³
(1− ) + 

¡
 ¢´

⎞⎠1

(38)

 −  =
b (− )

⎛⎝ 


³
(1− ) + 

¡
 ¢´

⎞⎠1

(39)

Now let’s turn to the revenue. Expression (30) contains an integral which we want to solve

for analytically. From the proof of Lemma 4 we haveZ 



( − ) ·  ()  =

µ
− 

− 

¶ ∙
 + 

( + 1)

¸
− 

µ
− 

− 

¶

=

µ
− 

− 

¶ ∙
 + 

( + 1)
− 

¸
=

µ
− 

− 

¶ ∙
 − 

( + 1)

¸
=

µ
− 

− 

¶


( + 1)
(− ) 

Substituting into (30) yields

 = (1− )

∙
+  · (+ ) (b) 

( + 1)
(b− ) +  ( − ) (1−  (b))¸+ E () 

Taking into account expressions (37)-(39), we have expressed the revenue as a function of

 only. The term in brackets, corresponding to the revenue raised from strategic firms, is

plotted in Figure 3.

E.1 Computing the revenue raised with the extremal strategy in

the class below 10

The extremal strategy audits with probability 
³
+ b´ all firms who report less than  (a

threshold yet to be determined) and does not audit any firm which reports  or more. As

explained in Section 5.1, if  () ≥ 
³
+ b´ then a firm with true tax base  will report

truthfully. Therefore, under the extremal strategy there is no cheating among firms who

report below  and the success rate of audits is zero. The threshold  is determined by the
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budget constraint. According to equation (35), in equilibrium a fraction equal to

005

Z 



∙
(1− ) 

¡
∗−1 ()

¢ ∗−1 ()


+  ()

¸
 (40)

of all firms in the audit class is audited. This equation reduces to

005

"
(1− )

Z 10



µ
+ 1



¶ µ
1

− 

¶

 ( − )
−1

 + 

µ
 − 

− 

¶
#

= 005

"
(1− ) + 

µ
10

12

¶
#

= 005 [(1− ) +  (0915 39)] = 005 · 0947 41 = 0047

where we substituted  = 0621 5. The number 0.047 needs to equal to the fraction of firms

audited under the extremal strategy. Under the extremal strategy, all firms (strategic or not)

with tax base below  will report truthfully and be audited with probability 
+

 No other

firm will report in that range. Therefore, the fraction of firms audited under the extremal

strategy is given by the equationZ 





+ b ()  =


+ b ( )
=



+ b
µ
 − 

− 

¶



Equating this to 0.047 and solving for  yields

 = + (− )

Ã
+ b

0047

! 1


= 12

µ
0047

04 + 687

04

¶ 1


= 8 671 0

The money raised from strategic firms under the extremal strategy equals the amount de-

clared by firms with tax base below  plus the amount declared by firms with tax base

66



greater than  which is exactly  Formally,

(1− )

∙Z 



 ()  +  (1−  ( ))

¸
= (1− )

"


Z 





µ
1

− 

¶

 ( − )
−1

 + 

Ã
1−

µ
 − 

− 

¶
!#

= (1− )

"


µ
 − 

− 

¶



∙
 − 

 + 1
+ 

1



¸
+ 

Ã
1−

µ


12

¶
!#

= (1− )  [2 418 8 + 1 264 0]

= (1− ) 1 473 1

E.2 Other audit classes

We can repeat the same procedure for the other two audit classes. This is done in Appendix

D.3 and D.4. For the audit class 26-50, The results for all audit classes are presented in the

table below.

E.3 Audit class 11-25

According to equation (35), a fraction equal to

004

Ã
(1− ) + 

µ
 − 

− 

¶
!
= 0037

of all firms in the audit class is audited. This number needs to equal to the fraction of firms

audited under the extremal strategy. Under the extremal strategy, the fraction of firms

audited is given by the equation



+ b ( ) = 

+ b
µ
 − 

− 

¶



Equating this to 0.037 and solving for  yields

 = + (− )

Ã
+ b

0037

! 1


= + (− )

µ
04 + 8447

04
0037

¶ 1


= 23224
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The money raised from strategic firms under the extremal strategy equals

(1− )

∙Z 



 ()  +  (1−  ( ))

¸
= (1− )

"


µ
 − 

− 

¶



∙
 − 

 + 1
+ 

1



¸
+ 

Ã
1−

µ
 − 

− 

¶
!#

= (1− )  (12 784 + 4 219) = (1− ) 04 · (12 784 + 4 219) = (1− ) 6 801 2

where the first equality follows from Lemma 4.

So, summing up, the money raised from honest firms is 6 970 8 That raised from strategic

firms in equilibrium is 6 546 1 That raised from strategic firms under the extremal strategy

is 6 801 2

E.4 Audit class 26-50

In this audit class we focus on the parameter constellation corresponding to  = 1. According

to equation (35), a fraction equal to

0046

Ã
(1− ) + 

µ
 − 

− 

¶
!
= 0042

of all firms in the audit class is audited. This number needs to equal to the fraction of firms

audited under the extremal strategy. Under the extremal strategy, the fraction of firms

audited is given by the equation



+ b ( ) = 

+ b
µ
 − 

− 

¶



Equating this to 0.042 and solving for  yields

 = + (− )

Ã
+ b

0042

! 1


= + (− )

µ
+ 6954


0042

¶ 1


= 47 914

The money raised from strategic firms under the extremal strategy equals

(1− )

∙Z 



 ()  +  (1−  ( ))

¸
= (1− )

"


µ
 − 

− 

¶



µ
 − 

 + 1
+ 

1



¶
+ 

Ã
1−

µ
 − 

− 

¶
!#

= (1− )  (28 537 + 10 917) = (1− ) 15 782
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where the first equality follows from Lemma 4.

So, summing up, the money raised from honest firms is 16 076 That raised from strategic

firms in equilibrium is 15 264 That raised from strategic firms under the extremal strategy

is 15 782
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