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Abstract

Moral Foundations Theory is an influential empirical description of moral
perception. According to this theory, individuals make moral judgments based
on five distinct “moral foundations:” Care, Fairness, Loyalty, Authority and
Sanctity. We provide a theory that explores the claimed evolutionary basis for
these moral foundations. The theory conceptualizes these five moral foundations
as specific modifications of fitness preferences in a 2× 2 game. We find that the
five foundations are distinguishable from each other and evolutionarily stable.
However, the five foundations are not a minimal set: strict subsets of the
five moral foundations suffice to describe all preferences that are evolutionarily
stable. Not all foundations that are evolutionarily stable need deliver fitness
improvement over the equilibrium in the fitness game: we characterize which
do. Finally, we study moral overdrive, i.e., the situation in which the moral
component of preferences totally dominates fitness and drives decision making
entirely. While every one of the five foundations is compatible with moral
overdrive in at least one fitness game, there is no fitness game in which moral
overdrive is compatible with fitness improvement.
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1 Introduction

There are reasons to believe that human morality has been shaped at least partly

by evolutionary pressures. Very young babies show proto-moral behavior, suggesting

that certain moral principles are partly innate and, hence, potentially inheritable.1 In

addition, twin studies find that several distinct moral principles are inherited.2 This

paper asks: what kind of moral principles emerge from and survive an evolutionary

process?

We focus on five distinct moral principles that have been identified by recent

empirical scholarship. According to Moral Foundations Theory (Graham et al., 2013),

five distinct “moral foundations” – Care, Fairness, Authority, Loyalty, and Sanctity

– anchor moral judgments and influence behavior. These five principles are said

to be selected by evolution,3 however, no rigorous theoretical justification has been

offered for this claim. Empirically, these principles are elicited through surveys,4 and

individuals vary in the emphasis they place on each of these principles.5 Though some

scholarship argues that this variation can be reduced to just two principal components

rather than five separate foundations, there is agreement that, empirically, individuals

vary in their moral makeup along at least two dimensions.6

At odds with this multidimensional moral landscape, the seminal game-theoretic

contributions on the evolution of morality, (Bester and Guth, 1998; Alger and Weibull,

2013, 2016, 2017; Alger et al., 2020) identifies a single dimension, i.e., a single moral

principle that, moreover, all individuals who interact with each other possess in the

same degree. Existing theory, therefore, is mono-factor and predicts no individual

1For example, babies as young as 34 hours old cry reflexively when exposed to crying sound,
suggesting a concern for others; and 5-month-old infants prefer (reach to) an adult Helper of
a puppet to a Hinderer, and prefer appropriately antisocial characters (who harm Hinderers)
over inappropriately prosocial ones (who help Hinderers), actions which are consistent with moral
evaluation. See Hamlin (2013).

2Zakharin and Bates (2023) show that monozygotic twins are more “morally similar” than
dizygotic twins.

3Graham et al. (2013) p. 60 state that the five foundations are “the concerns, perceptions, and
emotional reactions that consistently turn up in moral codes around the world, and for which there
are already-existing evolutionary explanations” (emphasis added).

4Various survey instruments are made available at https://moralfoundations.org/questionnaires/.
See also Graham et al. (2011).

5This variation across people is referred to as “moral pluralism.” Intriguingly, the degree to which
people emphasize certain principles has been found to correlate with political leanings, with Liberals
(in the US sense of the term) most focused on Care and Fairness whilst Conservatives valuing each
foundation more evenly (Graham et al., 2009).

6Zakharin and Bates (2021) review the “number of dimensions” literature.
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variation. In this paper, we build on the empirical groundwork laid by Moral

Foundations Theory in order to produce a mathematical theory in which several

moral principles can coexist, meaning that different individuals who interact with

each other can hold different moral principles, and where at least two moral principles

are evolutionarily stable. Our exercise, then, provides a theoretical underpinning for

the empirically observed multidimensionality of the moral landscape.

The model is as follows. Players repeatedly play a two-by-two symmetric game with

randomly drawn opponents. The symmetric game is fully characterized by the row

player’s fitness matrix, denoted by Π. However, in playing the game, players do not

maximize Π but, rather, Π +m(Π). The matrix-valued function m(·) will be referred

to as a “moral principle.” Different functions m capture different moral principles; for

example, a function m captures the Fairness principle if, in the game induced by Π,

the matrix m(Π) adds rewards (positive utils) on the outcomes in which players have

more-similar payoffs. The evolutionary stability concept operates on moral principles,

and it is the same as in Dekel et al. (2007): we say that “m is evolutionarily stable

for Π” if Π +m(Π) is evolutionarily stable. [Note: evolutionary fitness is based on Π

only, not on Π +m(Π) ].

If m is evolutionarily stable for Π, a population that maximizes Π + m(Π)

achieves a fitness level that is no lower, and sometimes higher, than a population that

maximizes Π. It may be surprising that non-fitness maximizing behavior could be

evolutionarily stable; consider, however, that m provides players with potentially pro-

social commitment power. The reason that this commitment power is not exploited by

mutants endowed with some arbitrary m̃, is that incumbents are able to detect mutants

and play differently against them. For commitment power to be evolutionarily stable,

then, the players’ (including the mutants’) moral principles must be observable.7 We

defend the assumption that moral principles are observable at page 25, based on the

notion that, in the small communities where morality may have evolved historically, a

person’s moral principles may have been observable for practical purposes. Empirical

evidence supports the idea that moral principles are common knowledge among

acquaintances.8

7Indeed, Dekel et al. (2007), Section 4 show that, if moral principles are not observable, all
evolutionarily stable equilibrium behavior reduces to the Nash equilibrium set of Π.

8Helzer et al. (2014) asked subjects to rate their own moral character using a multi-trait measure;
then, the subjects’ friends, family members, and acquaintances rated the subjects on the same traits.
The authors find substantial self/other and inter-judge agreement.
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In some game forms, however, m may be evolutionarily stable and yet a population

that maximizes Π+m(Π) behaves the same as a population that maximizes Π alone.

In other words, m does not affect behavior except in play against mutants. In these

games, morality evolves not because it improves the fitness of the outcome, but because

it is not a hindrance in the competition against mutants.

We allow evolution to operate on the space of all moral principles, i.e., all matrix-

valued functions m(·). But this is a very rich space, and not all different functions

m(·) give rise to different behavior. A focal (and interpretable) subset of this space is

represented by the five foundations from Moral Foundations Theory. Accordingly, we

define five different mathematical functions m(·) that operationalize Care, Fairness,

Authority, Loyalty, and Sanctity generating, for each different Π, five potentially

different m(Π)’s – each of which may or may not be stable. We refer to these five

principles collectively as the “5m’s” (m stands for “moral principle”). We ask:

1. (distinguishability) Are the 5m’s distinct from each other, i.e., do different

elements m in the 5m’s give rise to strategically different matrices Π+m(Π) ? In

other words, for each pair in the 5m’s, is there an opponent that induces different

behavior?

2. (spanning) For every fitness matrix Π, is every evolutionarily stable matrixm(Π)

generated by a moral principle m that is in the 5m’s?

3. (minimal spanning) Is the set of the 5m’s minimal, or are there strict subsets of

the 5m’s that generate all evolutionarily stable matrices m(Π) ?

4. (moral code design) Not all evolutionarily stable matrices m(Π) lead to fitness

improvement in equilibrium play. Suppose a planner sought to design a stable

minimal moral code that guaranteed all possible fitness improvements: which

subset of the 5m’s would the planner need to include in the code?

5. (moral overdrive) Can the matrix m(Π) be very “large” relative to Π and still

be evolutionarily stable? That is, what moral principles can be “blown out of

proportion” and still be evolutionary stable?

The answer to question 1 is yes: for any pair of principles m and m′ in the 5m’s,

there exists a fitness matrix Π such that Π + m(Π) is not strategically equivalent

to Π + m′(Π). Therefore, any two elements of the 5m’s are pairwise distinguishable
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(Theorem 1). This is non-obvious because it goes against the “counting intuition”

that there are many 5m’s (to wit, five) compared to the small complexity of behavior

that can be encoded in a 2×2 matrix m(Π). If any two elements of the 5m’s were

not distinguishable, our 2×2 setting would be too low-dimensional to allow for five

different moral principles.

The answer to question 2 is yes as well; this means that the 5m’s are, generically,

“rich enough” to generate all m(Π)’s that are evolutionarily stable for any given Π

(Theorem 2). But, the 5m’s are not the smallest set that is rich enough: Theorem

3 identifies two proper subsets of the 5m’s each of which is rich enough to generate

all m(Π)’s that are evolutionarily stable for any given Π. Therefore, the answer to

question 3 is no: the 5m’s are not the minimal set that generates all evolutionarily

stable moral principles.

Question 4 is answered in Theorem 4: a designer who seeks to maximize fitness by

designing a moral code based on the fewest number of principles in the 5m’s will only

need to include Fairness or Loyalty in the moral code.

The answer to question 5 is yes: in some games, moral principles can be “blown

out of proportion” and still be evolutionary stable (Lemma 2). However, when this

is the case, these moral principles do not improve fitness relative to equilibrium play

with Π (Theorem 5).

This paper contributes to the literature on moral psychology by proving theoretical

support for three commonly made claims: that people can be moved by several (i.e.,

more than one) distinct moral principles; that people in the same society vary in the

emphasis they place on these principles; and that these principles emerge from an

evolutionary process. We provide a rigorous theoretical model in which these three

claims hold simultaneously. It’s worth noting that our analysis relies on an individual

selection mechanism, and not on group selection à la Bowles and Gintis (2011): we

elaborate on this in Section 4. There, we also discuss the way that our mechanism

differs from “internalized norms.”

Our paper also contributes to the empirical debate concerning how many distinct

moral principles there are (see, e.g., Zakharin and Bates (2021)). The creators of

Moral Foundations Theory (henceforth, MFT) hold that there are five foundations,

but others hold that, empirically, the majority of cross-person variation in the response

to the MF Questionnaire can be summarized by just two high-level factors: a so-

called individualizing one (overlapping with Care and Fairness) and a so-called binding

5



one (overlapping with Loyalty, Authority, and Sanctity). We find that, while all

five foundations postulated by MFT withstand the test of an evolutionary process,

nevertheless the set of five foundations is not minimal in the sense that all stable

behavior in all games can be generated by a proper subset of the five foundations.

In fact, we identify two different proper subsets of the five foundations that are

sufficient to generate all stable behavior in all games. Intriguingly, each of these two

subsets happens to contain one individualizing and one binding foundation, arguably

consistent with the two-factor reading of the empirical evidence.

In this paper, we adopt the “indirect evolutionary approach” (Güth, 1995; Güth

and Yaari, 1992; Dekel et al., 2007) to preference evolution.9 This approach assumes

that individuals play rationally for given preferences, but that these preferences are

subject to evolutionary selection according to the “biological fitness” of the behavior

that they induce. The indirect evolutionary approach can generate departures from

fitness-maximizing preferences because of their strategic effect on opponents (Heifetz

et al., 2007). But this breaks down if preferences are unobservable (Ok and Vega-

Redondo, 2001; Ely and Yilankaya, 2001; Güth and Peleg, 2001), at least if the

standard assumption of random matching is maintained. By contrast, if assortative

matching is assumed under incomplete information, then preferences depart from

fitnesses once more, in the direction of “Kantian” preferences: players place some

weight on the action that, if played by both players, would result in maximal fitness

(Alger and Weibull, 2013). This finding has spawned a literature exploring what

moral behavior is stable (Alger and Weibull, 2016, 2017; Alger et al., 2020), but its

operation is quite different from the complete-information analysis of the current paper

and, as a result, these papers yield a mono-factor theory of morality. Our analysis

builds on, but is different to the framework laid out by Dekel et al. (2007) because

their analysis focuses on the preference matrix P , which they interpret as a generic

“subjective preference.” In contrast, our analysis focuses on the matrix P − Π: we

define functions m that produce P − Π and are interpretable as moral foundations.

Therefore, we are able to ask (and answer) questions 1-5, which are based on m and

not on P .

9On preference evolution in general, see Robson and Samuelson (2011) and Alger (2023).
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2 The Model

Members of a large (but finite) population are repeatedly matched at random to play

a two-player two-action normal-form game G, which has action set {A,B} with mixed

action being denoted by ∆. The 2× 2 fitness matrix

Π =
a b

c d

measures a player’s fitness, or reproductive success, resulting from the players’ action

profiles. Every agent in the population has the same Π, and we examine all possible

configurations of Π. A particular ordering of {a, b, c, d} induces a fitness game or, with

some abuse of notation, a game; for example, if c > a > d > b, we refer to Π as “a

Prisoners’ Dilemma game.” By convention, and without loss of generality, we assume

a ≥ d. We think of Π as capturing the “material” payoffs earned by the players,

separate from their moral principles.

The players do not care directly about fitnesses, but instead have the more familiar

(von Neumann–Morgenstern) preferences over G’s outcomes, which are probability

distributions on {A,B} × {A,B}. The space of all 2× 2 matrices M captures the set

of all possible utility functions on {A,B}×{A,B}. A generic element P ∈ M captures

a player’s preferences. If a player with preference matrix P plays the mixed action σ

against an opponent playing σ′, then she receives expected utility P (σ, σ′). We think

of P as capturing the player’s overall motivation, which reflects both material payoffs

and any moral principles.

The preferences of a player’s opponent are randomly drawn from the population’s

preference distribution, generically denoted by the probability distribution µ on M.

We assume that matched players observe one another’s preference matrices; this

assumption is discussed at page 25.10

A strategy for a player with preference matrix P is a function σP : M → ∆

that specifies a mixed action conditional on the preference matrix of the matched

opponent. The choice of strategies by members of the population µ then defines a

complete-information population game Γ(µ), and we assume that the players play a

Nash equilibrium of this game, i.e., bP (P
′) ∈ argmaxσ∈∆ P (σ, bP ′(P )) for each P, P ′ ∈

10Dekel et al. (2007) also analyze scenarios with incomplete and partial information.
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M.11 Let B(µ) denote the set of Nash equilibrium strategy profiles of Γ(µ).

Given a population distribution µ and an equilibrium strategy profile b ∈ B(µ),

the average fitness of a player with preference matrix P ∈ supp(µ) is

Π̄P (µ | b) =
∑

P ′∈supp(µ)

Π(bP (P
′), bP ′(P )) · µ(P ′).

2.1 Moral proclivity matrices and moral principles

Our object of interest is the difference between P and Π, which we will interpret as a

“moral proclivity.” To this end, we introduce notation for a matrix M which, when

added to Π, produces P .

Definition 1 (moral proclivity matrix). A 2× 2 matrix with non-negative entries

{0, x, y} is a moral proclivity matrix if it has at least one zero in each column and,

by convention, x in the left-hand column. We denote a moral proclivity matrix by

M(x, y).

The moral proclivity matrix M(x, y) will be added to Π, a player’s fitness matrix,

to obtain P , the player’s preference matrix. The moral proclivity matrix captures the

“moral” aspect of a game that make a player behave differently than would be dictated

by Π alone. Since Definition 1 implies that x and y are nonnegative, M(x, y) represents

rewards, not punishments. Note that there is no loss of generality (and considerable

economy of parameters) in requiring that two entries of a moral proclivity matrix equal

zero. Indeed, the sole function of the moral proclivity matrix is to change a player’s

best response and two strategically placed numbers, x and y, suffice to achieve any

best response.

Moral principles are rules that take as input any fitness matrix Π and output a

moral proclivity matrix.

Definition 2 (moral principle). A moral principle m(x, y; ·) is a function that maps

a fitness matrix Π into moral proclivity matrix M(x, y).

Figure 1 illustrates the relationship between: the fitness matrix Π; a moral principle

m(x, y; ·); the moral proclivity matrix M(x, y) generated by the moral principle;

and preferences P . The fitness matrix Π induces a symmetric game whose payoffs

11Note that this definition implies that if two players have the same P , they play the same action
in equilibrium.
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drive reproductive success. However, instead of maximizing Π, the agent maximizes

preferences P , which result from a combination of fitness and moral proclivities. Moral

proclivities, in turn, are generated by moral principles, i.e., general rules that apply

to any given Π.

Figure 1: Relationship between Π, m(x, y; ·), M(x, y), and P .

We shall be interested in which moral principles m survive the evolutionary process

in the game induced by a given Π. For example, we will be interested in whether

the moral principle m =Care survives the evolutionary process when Π induces a

Prisoners’ Dilemma game.

2.2 The 5m’s

Moral principles could be very complicated functions of x, y, and Π. Next, we describe

five principles that were empirically identified by Moral Foundations Theory: Care,

Fairness, Authority, Loyalty, and Sanctity. We call these principles the “5m’s.”

To operationalize the 5m’s as functionsm(x, y; Π), we need to introduce the concept

of a Kantian action.

Definition 3 (Kantian action). The Kantian action is the pure-strategy action

which, when taken by both players, yields the highest total fitness.

Since, by assumption, a ≥ d, the Kantian action is A. Table 1 illustrates how we

operationalize the 5m moral principles. Appendix A provides mathematical definitions

of the 5m’s.
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Operationalizing the “5m” moral principles

Moral principle Operational rule: boost with x or y

the entry which ...

Care (x, y; Π) for each given opponent’s action makes the

opponent best off

Fairness (x, y; Π) for each given opponent’s action has the

most-equal payoffs

Authority (x, y; Π) for each given opponent’s action makes me

best off relative to the opponent

Loyalty (x, y; Π) rewards the opponent who took the Kantian

action and punishes the opponent who did

not

Sanctity (x, y; Π) corresponds to the Kantian action

regardless of the opponent’s action

Table 1: Operationalizing Moral Foundations Theory. Appendix A provides

mathematical definitions of the 5m’s.

A few comments on how we operationalize the moral foundations. In Table 1,

Care is operationalized as a concern for the material well-being (i.e., fitness) of the

other player, and Fairness is operationalized as a preference for equality of outcomes.

We regard these operationalizations as consistent with the literature and relatively

uncontroversial.12 Our definition of Authority captures a preference for high relative

status.13 Admittedly, this preference is only part of what goes on in a hierarchical

or power relationship; the element of respect for hierarchy, or deference to power, is

missing from the definition. However, the model is too stylized to embed a hierarchical

relationship so our definition is, of necessity, limited. Turning to Loyalty, the most

natural definition would be a preference for behaving kindly toward those who one

considers part of an “in-group,” and spitefully towards those who one considers part

12For example, Bester and Guth (1998) and Miettinen et al. (2020) operationalize “altruism” in
the same way as we do Care. And Fehr and Schmidt (1999) operationalize “inequality aversion” in
the same way as we do Fairness. Refer to Appendix B for a proof of these statements.

13Note that Authority is not the opposite of Fairness: the latter is about the absolute value of the
difference in the players’ fitness, whereas the former is about the sign of the difference. Another way
of seeing the difference: the opposite of Fairness is a preference for inequality, whereas Authority is
a preference for favorable inequality.
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of an “out-group”. Lacking a definition of in- and out-groups, we approximate this

notion as for behaving kindly toward players who behave virtuously from the group’s

perspective and, conversely, being spiteful toward players who don’t.14 Finally, in

the context of Moral Foundations Theory, the term Sanctity is used not necessarily in

reference to organized religion but, rather, in reference to notions of purity of behavior,

such as not defiling the environment, or not eating certain foods, or performing

sacrifices. The ethnographic literature is split over whether the actions that are deemed

pure in a given culture are in fact pro-social or, rather, they emerge arbitrarily out of

cultural accident. Our operationalization of Sanctity adopts the pro-social view.

The set 5m is comprised of all the moral principles listed in Table 1. Formally,

5m = {m(x, y; ·) | m ∈ {Care, Fairness, Loyalty, Authority, Sanctity}; x, y ≥ 0} .

Appendix A provides mathematical definitions of the 5m’s. Appendix B highlights

previous papers in which our operationalizations of different moral principles

have previously surfaced, suggesting that our operationalizations are not entirely

idiosyncratic. The next example illustrates the 5m’s in the context of a coordination

game.

Example 1 (the 5m’s moral principles in a coordination game). The fitness

matrix

Π =
2 −1

1 0

induces the coordination game

A B

A 2, 2 −1, 1

B 1,−1 0, 0

.

14If we interpret the out-group as “someone who does not choose the Kantian action,” then our
definition of Loyalty may be interpreted as “loyalty to ideals of behavior that our group deems to
be fitness-maximizing,” where “our group” means “those whose fitness is determined by Π.” In this
interpretation, the in-group are those whose follow these ideals of behavior, and the out-group are
those who follow different ideals (those where B is fitness-maximizing). Our definition of Loyalty
prescribes that the former should be rewarded, and the latter punished. There is some evidence that
young children behave this way: Hamlin (2013) presents experimental evidence that children reach
out for puppets that behave pro-socially, and punish puppets that behave anti-socially.
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The moral principle Care gives extra utils to the entry which, for each given

opponent’s action, makes the opponent best off. Since 2 > −1 and 1 > 0, applying this

moral principle to the coordination game induced by Π produces the following moral

proclivity matrix:

Care (x, y; Π) =
x y

0 0
.

The moral principle Fairness gives extra utils to the entry which, for each given

opponent’s action, has the most-equal payoffs. Since, |2−2| < |1− (−1)| and |0−0| <
|−1−1|, applying this moral principle to the coordination game induced by Π produces

the following moral proclivity matrix:

Fairness (x, y; Π) =
x 0

0 y
.

The moral principle Authority gives extra utils to the entry which, for each given

opponent’s action, makes the row player best off relative to the opponent. Since, 1 −
(−1) > 2 − 2 and 0 − 0 > −1 − 1, applying this moral principle to the coordination

game induced by Π produces the following moral proclivity matrix:

Authority (x, y; Π) =
0 0

x y
.

Applying the moral principle Loyalty requires identifying the Kantian action, which

is A by assumption. Loyalty requires boosting the utils of the row player who: (a)

conditional on the opponent playing A, picks the action that makes the opponent best

off; and (b) conditional on the opponent playing B, picks the action that makes the

opponent worse off. Since 2 > −1 and 0 < 1,

Loyalty (x, y; Π) =
x 0

0 y
.

Finally, the moral principle Sanctity requires boosting the utils of the row player
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who plays the Kantian action A, so:

Sanctity (x, y; Π) =
x y

0 0
.

Note that, for this Π, not all moral principles generate different moral proclivity

matrices: for example, Fairness and Loyalty happen to produce the same moral

proclivity matrix. Therefore, for this Π, Fairness and Loyalty are not distinguishable.

We will return to the issue of distinguishability in Section 3.1.

2.3 Stability

We adopt the notion of stability introduced by Dekel et al. (2007). Technically,

this definition applies jointly to population preference distributions and equilibrium

strategy profiles, but the gist of it is that preferences are stable if they survive the

entry of players with new preferences. We lay out their definition next.

The first ingredient of a stable configuration (µ, b) is that all incumbents must

receive the same fitness, a property referred to as balance. Throughout the paper,

agents with preferences in supp(µ) are referred to as an incumbents, and an agents

with preferences not in supp(µ) are referred to as a mutants.

Definition 4 (balanced configurations). A configuration (µ, b) is balanced if

Π̄P (µ|b) = Π̄P ′(µ|b) for all P, P ′ ∈ supp(µ).

Intuitively, a configuration (µ, b) is balanced if the average fitness of all incumbents

is the same. The second ingredient is the stabilizing equilibrium selection for

incumbent play. Given an original configuration (µ, b) and a mutant preference P̃ ,

let Nε(µ, P̃ ) = {µ′ : µ′ = (1 − ε′)µ + ε′P̃ , ε′ < ε} denote the set of all preference

distributions resulting from entry by at most ε mutants.

Definition 5 (focal strategy profiles). Given µ̃ ∈ Nε(µ, P̃ ), an equilibrium strategy

profile b̃ ∈ B(µ̃) is focal if b̃P (P
′) = bP (P

′) for all P, P ′ ∈ supp(µ).

Intuitively, an equilibrium profile is focal if, when playing against each other,

incumbents do not switch Nash equilibria as a function of the prevailing mutant

population. Let B(µ̃ | b) be the set of all focal equilibrium profiles relative to b if

the population distribution is µ̃.
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Definition 6 (stable configurations). A configuration (µ, b) is stable if it is

balanced and if there exists ε > 0 such that, for every P̃ ∈ M and µ̃ ∈ Nε(µ, P̃ ),

Π̄P (µ̃ | b̃) ≥ Π̄P̃ (µ̃ | b̃) for all b̃ ∈ B(µ̃ | b) and P ∈ supp(µ).

Thus, at a stable configuration, incumbents must do no worse than any mutant in

any post-mutation focal equilibrium.15 Next, we define stable preferences (Definition

7 below, part 1). In addition, since we want to talk about morality, it helps to define

stable moral principles and stable moral proclivity matrices (Definition 7, parts 2 and

3).

Definition 7 (stability).

1. A preference P is stable for Π if P ∈ supp(µ) for some stable configuration (µ, b).

2. A moral proclivity matrix M(x, y) is stable for Π if the preference Π +M(x, y)

is stable for Π.

3. A moral principle m(x, y; ·) is stable for Π if the moral proclivity matrix

m(x, y; Π) is stable for Π.

For any given Π, Dekel et al. (2007) characterize all preferences P that are stable;

we list them in appendix C. In this appendix we also report, for each Π, the stable

moral proclivity matrices and the moral principles that generate them.16

15Since the set B(µ̃|b) of focal equilibrium profiles (relative to b under µ̃) is always nonempty for
observable preferences, the second part of Dekel et al. (2007) stability Definition 3 does not apply,
leading to the complete-information version of stability stated above.

16Dekel et al. (2007)’s is a static stability concept is in the spirit of evolutionary stability
(Maynard Smith and Price, 1973; Maynard Smith, 1974), but with some modifications to alleviate
(though not remove) existence problems in the preference evolution setting. Specifically: given the
equivalent play frequently induced by multiple types, “neutral stability” (Maynard Smith, 1982) is
much better suited to identifying stable preferences, so that mutants may not have strictly larger
payoffs than incumbents in the equilibrium that their entry induces; and given the inherently
destabilizing force of multiple equilibria for given preferences, it is natural to make a stabilizing
equilibrium selection for incumbent play.
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3 Results

3.1 Distinguishability of the 5m’s

According to Moral Foundations Theory, the 5m’s as empirically distinguishable from

each other. But are they, within our model? That is, do they generate different

behavior? For a given Π, the answer is no: Example 1 shows that several different 5m

moral principles generate the same moral proclivity matrix. This makes sense: in any

given 2× 2 game, we cannot expect five different best responses. In what sense, then,

can the 5m’s be said to generate different behavior? Theorem 1 below provides the

answer.

In order to state Theorem 1, we first need to define strategic equivalence. Here is

a formal definition.

Definition 8 (strategic equivalence). Two preferences P and P ′ are said to be

strategically equivalent if their best response correspondences are the same.

Strategic equivalence means that, for every action taken by the opponent, the

player’s best response(s) under P and P ′ are the same. We are now ready to state

Theorem 1.

Theorem 1 (pairwise distinguishability of the 5m’s moral principles). For

any pair of the 5m’s moral principles, there exists a fitness matrix Π such that the two

moral principles span stable preferences that are not strategically equivalent.

Proof. See the appendix D.2.

Theorem 1 says that any two 5m principles generate different behavior in some

game – even though they cannot generate different behavior in all games. This is a

good sanity check because, if any two elements of the 5m’s were not distinguishable, our

2×2 setting would be too low-dimensional to allow for five different moral principles.

The empirical content of Theorem 1 is revealed in equilibrium play. When two

moral principles m and m′ generate preferences that are not strategically equivalent,

there exists a mutant (or possibly an incumbent) against whichm prescribes a different

equilibrium play than m′.

15



3.2 The 5m’s span the set of stable preferences

Let’s start by setting expectations: it is not obvious that the 5m’s should be able to

generate all evolutionarily stable preferences P for all Π’s, because the 5m’s are just a

few of all possible moral principles. Indeed, the next lemma shows that the 5m’s are

not rich enough to generate all possible preferences P . In order to state the lemma,

we must first define the concept of spanning.

Definition 9 (spanning). A moral principle m spans P for a given Π if Π+m(x, y; Π)

is strategically equivalent to P for some x, y ≥ 0.

Intuitively, the moral principle m spans P if an agent with preference Π+m best-

responds exactly like an agent with preference P would against any possible opponent.

Lemma 1 (preference matrices generated by the 5m’s do not span the space

of all matrices). There exists a pair Π, P such that no moral principle in the 5m’s

spans P .

Proof. See appendix D.3.

This lemma says that, for the purpose of generating preferences P , there is loss of

generality in restricting attention to the 5m’s. Hence, it is not obvious that the 5m’s

would be able to generate all the evolutionarily stable preferences P for all Π’s. The

fact that they do (Theorem 2) is, therefore, not trivial.

Theorem 2 is the main result of this subsection. It shows that generically, i.e., for

almost any fitness matrix Π, the 5m’s moral principles are sufficient to span almost

all of its stable preferences. To state Theorem 2, we must first introduce a notion of

genericity.17

Definition 10 (non-genericity). Given two sets A,B belonging to a vector space V

with A ∩ B ̸= ∅, A is non-generic in B if it has lower dimension than B. If B is the

parent space to which A belongs, A is said to be simply non-generic.

A property holds non-generically in a set if it holds only on a subset of lower dimension

than the whole set.18 For example, a point is non-generic in the real line, but an

17A similar notion of genericity is used by Govindan and Wilson (2012).
18Dimension here is the standard notion of dimension in a vector space, namely the cardinality of

its basis; or in the case of a subset A of V , the cardinality of the basis of the smallest subspace of V
that contains A.
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interval [a, b] is not; the real line is non-generic in R2, but a square [a, b] × [a, b] is

not. In the space M of 2 × 2 matrices, meanwhile, whereas the set of all Hawk-Dove

games19 is generic because it has the same dimension (four) as M, the following game

has dimension three and is hence non-generic.

Example 2 (pure-common value Hawk-Dove game is non-generic). The fitness

matrix
a b

b d
,

with b > a ≥ d, is a pure-common value Hawk-Dove game. The set of all such matrices

is non-generic in the space M of 2× 2 matrices.

Rather than applying the concept of genericity to set of matrices in M, it will

be expositionally convenient to apply this notion to graphs in M2 that map fitness

matrices into preference matrices.20 We use this graph as a convenient litmus test for

non-genericities both in the space of fitness matrices and in the space of preference

matrices. This is because a graph is non-generic in M2 if either its domain or its range

are non-generic in M; so a graph “inherits” any non-genericities in its domain and

range.21 To this end, define the following graph:

ES = {(Π, P ) ∈ M2 | P is stable for Π},

which is the graph of the set of evolutionarily stable preferences. Let 5M be the graph

of the set of preferences spanned by the 5m’s, i.e.

5M = {(Π, P ) ∈ M2 | P = Π+m(x, y; Π), m ∈ 5m, x, y ≥ 0}.

We are now ready to state this subsection’s main result.

Theorem 2 (the 5m’s generically span the stable preferences). The graph

ES\5M is non-generic in ES.

Proof. See appendix D.3.

19This is the set of all fitness matrices with c > a and b > d.
20Note that the dimension of a set in the product space M2 is simply the sum of the dimension of

its projection on each constituent copy of M.
21In light of Example 2, therefore, any mapping from the set of pure-common value Hawk-Dove

games to any subset of M is non-generic.
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The interpretation of Theorem 2 is that the 5m’s are “rich enough” to transform

almost all fitness matrices Π into almost all their associated stable preferences P . Put

differently, the 5m’s are capable of spanning almost all stable preference matrices for

almost all Π’s. This result stands in contrast to Lemma 1, which shows that the 5m’s

are not capable of spanning all (including non-stable) preference matrices.22

Next, we develop some intuition for why just a few moral principles suffice to

span all stable preferences (Theorem 2). Very broadly, the argument goes like this.

Preference matrices come in four classes: A is a dominant strategy, B is a dominant

strategy, main-diagonal dominant, anti-diagonal dominant. Conveniently, however,

just two of these classes suffice to represent all evolutionarily stable preferences: the

classes in expression (1). This reduction, which follows from the fitness maximization

properties of Dekel et al. (2007)’s notion of stability, considerably reduces the set of

moral principles necessary to span all stable preferences – so much so that the 5m

suffice to span. This intuitive argument is developed next.

Evolutionary stability in the sense of Definition 7 is tightly connected to the notion

of fitness. Articulating this connection requires stating the following definition.

Definition 11 (fitness-maximizing preferences). A preference matrix P is fitness-

maximizing for Π if the Nash equilibrium set of P includes the mixed action σ that,

when played by both players, maximizes the sum of their fitness payoffs.

Intuitively, this definition says that a preference matrix is fitness-maximizing if its

Nash equilibrium implements the “fittest” action. From Dekel et al. (2007), we know

that a preference can only be stable for Π if it is fitness-maximizing for Π in the sense

of Definition 11. Moreover, for almost all Π’s that have a stable preference, the fitness-

maximizing mixed action is in fact the pure strategy A,23 and every preference matrix

whose equilibrium set includes A is strategically equivalent to one of the following two

matrices:

22The contrast between Lemma 1 (the 5m’s can’t span) and Theorem 2 (the 5m’s span) is
substantive – it is not a technical artifact of the fact that Theorem 2 only holds generically, whereas
Lemma 1 is stated uniformly. Indeed, the non-spanning property in Lemma 1 happens to have
“positive measure.” For example, for Πs with a > d > b > c, which are generic in the space of 2× 2
matrices, no principle from the 5m’s can span any preference with c > a and b > d, which are also
generic in the space of 2× 2 matrices.

23The only Π that has a stable preference for which the fitness-maximizing mixed action is not
the pure strategy A is the common-value Hawk-Dove game of Example 2, which happens to be
non-generic.
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A B

A x y

B 0 0

or

A B

A x 0

B 0 y

for some x, y ≥ 0. (1)

So, for almost all Π’s that have a stable preference, every stable preference must look

like one of the two matrices in (1). The 5m’s are capable of spanning almost all these

matrices for any Π. (In fact, even fewer than the 5m’s suffice: the intuition for this

will be explained in Section 3.3 below). Therefore, the 5m’s are capable of spanning

almost all stable matrices for almost all Π’s.

Remark 1 (non-genericities). What (non-generic) games are not covered by

Theorem 2? The proof of Theorem 2 shows that there is only one class of games

for which the entire set of stable preferences is not spanned by the 5m’s. This is the

pure-common value Hawk-Dove game of Example 2 which, of course, is non-generic

in M. In addition, there are (generic) games Π for which some, but not all of the

stable preferences are not spanned by the 5m’s. The non-spanned preferences all have

the form

e f

e h
,

which is, of course, non-generic in M.24 Furthermore, for those Π’s, the non-spanned

preferences are even non-generic in ES(Π) meaning, intuitively, that the quasi-totality

of the stable preferences are in fact spanned by the 5m’s.

3.3 Minimal spanning moral principles

Theorem 2 shows, roughly, that the 5m’s are sufficient to span the set of almost all

stable preferences for almost all fitness matrices. But it does not say that the 5m’s

constitute a minimal set: a smaller set could, in principle, suffice to span almost stable

preferences. This subsection shows that this is indeed the case.

Let FS be the graph of the set of preferences generated by {Fairness, Sanctity},
that is:

FS = {(Π, P ) ∈ M2 | P = m(x, y; Π), m ∈ {Fairness, Sanctity}, x, y ≥ 0};
24Depending on the values of f and h, this preferences specialize to, in the notation of Dekel et al.

(2007), BA1, AB1, and θ0.
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similarly, let CL denote that of {Care, Loyalty}. Finally, let D denote the graph of

the set of preferences generated by some subset D of the 5m’s, that is:

D = {(Π, P ) ∈ M2 | P = m(x, y; Π), m ∈ D ⊆ 5m, x, y ≥ 0}.

The next theorem shows that there are two subsets D of the 5m’s, each of which

is sufficient to span almost all the evolutionary stable preferences for almost all fitness

matrices. Moreover, any other subset with the same property must include at least

one of these two subsets. In these sense, these two subsets are “minimal.”

Theorem 3 (the two minimal spanning pairs). If D ∈ {FS, CL}, the graph

ES\D is non-generic in ES. Moreover, if the graph ES\D is non-generic in ES, then
D must contain FS or CL.

Proof. See appendix D.4

The theorem says that we can rationalize all evolutionarily stable moral behavior

by appealing to fewer than five moral principles, to wit: either Sanctity and Fairness ;

or Care and Loyalty. Intriguingly, each of these two subsets happens to contain at

least one individualizing component (including Care and Fairness) and one binding

component (including Loyalty, Authority, and Sanctity), potentially consistent with

the strand of the empirical literature that reduces moral pluralism to these two

principal components, instead of five foundations.

Next, we present some intuition for why each spanning pair in Theorem 3 spans all

stable preferences. The intuition is more transparent for the pair {Fairness, Sanctity}.
For almost all Πs, Fairness boosts the main diagonal of Π,25 just like the right-hand

matrix in (1); and Sanctity boosts the top row of Π (recall that, by convention, A

is the Kantian action) – just like the left-hand matrix in (1). Therefore, intuitively,

Sanctity and Fairness “morph” the matrix Π toward the matrices in (1), which we

know are the only stable preferences for all Π. The intuition is the same for the pair

{Care,Loyalty}, the difference being that, depending on the specific Π, Care morphs

the matrix Π toward either one of the two matrices in (1) – and Loyalty morphs Π

toward the other matrix.

This intuition suggests that, in order to span all the stable preferences for a given Π,

one needs two moral principles: one that generates unconditional moral proclivities (as

25The exception being the common value Hawk-Dove game of Example 2, which is non-generic.
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in the the left-hand matrix in (1)), and another one that generates moral proclivities

that are conditional on the opponent’s action (as in the the right-hand matrix in (1)).

Finally, we note that Authority is not featured in Theorem 3. The reason is that, for

every Π, Authority is only necessary to generate certain non-generic stable preferences,

and Theorem 3 does not cover these non-generic preferences. In this sense, Authority

plays a less-important role in our theory.

3.4 The design of fitness-improving moral codes

Consider a designer who, for any game Π, can pick an initial distribution over the 5m

moral principles, i.e., an initial condition µ0 from which a natural selection process

drives the evolution of µ toward its stable rest points. We interpret µ0 as a set of

Π-specific moral values that is instilled early on in a person’s life (perhaps through

schooling) but, after being set, is subject to evolutionary pressures throughout that

person’s life.26

We know that, starting from any µ0, the evolutionary process will necessarily

achieve a fitness-maximizing point if it converges at all.27 But suppose this designer

wants to maximize fitness during the transition: what should µ0 be set at? Intuitively,

this means that the designer seeks to endow young people with a subset of 5m moral

principles – we call this a moral code – that will serve them well through life and is

evolution-proof, meaning that future experiences will not drive the young people away

from the moral code. Furthermore, the designer seeks to minimize the number of

distinct moral principles that are necessary to generate the right µ0’s across all games

Π. We say that this designer seeks a minimal moral code.

What does a minimal moral code look like? For each Π, the moral code must

include at least one stable moral principle in the 5m. In the Hawk-Dove game, it

turns out, the only stable moral principles are Fairness and Loyalty, so any moral

code must include at least one of these principles. Furthermore, Fairness and Loyalty

happen to be stable in all games. Therefore, there are only two minimal moral codes:

one based on Fairness, the other based on Loyalty. This observation is recorded in the

following theorem.

26In this section, evolutionary selection is interpreted as an adaptive learning process that takes
place throughout each person’s life, boosting the moral values that increase fitness and withering
those that don’t, rather than as a process of genetic transmission across generations.

27This follows from Proposition 2 in Dekel et al. (2007).
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Theorem 4 (fitness-improving moral codes). There are only two minimal moral

codes: one based on Fairness, the other based on Loyalty.

Proof. See appendix D.5.

It is worth contrasting Theorem 4 with the results in Alger and Weibull (2013). In

their paper, the minimal moral code, i.e., the moral code that is stable in all fitness

games, is referred to as homo moralis, corresponding, in our terminology, to Sanctity.28

Of note, Sanctity is not featured in Theorem 4. This difference is not unexpected, of

course, due to the very different settings.

3.5 Intensity of moral principles and moral overdrive

One can ask whether, given a particular game Π, the stable moral proclivity matrices

M are “large,” “small,” or must be “just right.” The case of interest here is when

stable moral proclivity matrices M can be arbitrarily large. This is the gist of the

next definition.

Definition 12 (moral overdrive). Take a moral principle m(x, y; ·) that, for some

x, y, is evolutionarily stable for Π. If, for all numbers k > 1, k · m(x, y; ·) is

evolutionarily stable for Π, we say that m is compatible with moral overdrive in game

Π.

Intuitively, moral overdrive means that it is evolutionarily stable for the moral

component of preferences to swamp fitness as a decision-making criterion, and to

totally drive decision making in game Π. Next, we show that every moral principle in

the 5m is compatible with moral overdrive in at least one game Π.

Lemma 2. Every moral principles in the 5m’s is compatible with moral overdrive in

at least one game Π.

Proof. See appendix D.6.

Even though all of the 5m’s are compatible with moral overdrive in some game,

not all stable moral principles (whether in the 5m or not) are compatible with moral

overdrive in all games. In particular, there is an interesting class of games in which no

stable moral principle is compatible with moral overdrive. This is the class of games

28In Appendix B.5 we trace the formal connection between Sanctity and homo moralis.
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where moral principles actually improve equilibrium fitness. Fitness-improving moral

principles are defined next.

Definition 13 (strictly fitness-improving moral principles). A moral principle

m is strictly fitness improving for Π if, for some x, y ≥ 0, Π + m(x, y; Π) is fitness-

maximizing for Π whereas Π is not fitness-maximizing for itself.

Intuitively, a moral principle is strictly fitness-improving if the symmetric Nash

equilibrium among two players who adopt this principle generates more fitness than

any symmetric Nash equilibrium among two players who play according to Π. Not

many game types Π have strictly fitness-improving moral principles for the simple

reason that, often, the best Nash equilibrium of Π is fitness-maximizing and, thus, not

susceptible to improvement.29 Only in the Prisoners’ Dilemma and Hawk-Dove games

is there a mixed action σ that, when played by both players, delivers a strictly higher

fitness than the best symmetric Nash equilibrium.30 If we restrict attention to these

games, it turns out that no stable moral principle (including those not in the 5m’s),

is compatible with moral overdrive. Hence the next theorem.

Theorem 5 (moral overdrive is incompatible with fitness improvement).

There is no game Π in which a strictly fitness-improving moral principle is compatible

with moral overdrive.

Proof. See the appendix D.6.

In a sense, Theorem 5 could be interpreted as saying that moral overdrive is “not

needed” or “unhelpful.” However, it’s important to keep in mind that, in our theory,

evolutionary stability is not predicated on “being needed” or “being helpful” in the

sense of strictly improving fitness.

29Of course, even when the best Nash equilibrium of Π is fitness-maximizing, the presence of moral
principles is detectable because it changes equilibrium play against mutants. For example, suppose
Π = 2 −1

1 0
. Π’s fitness-maximizing equilibrium is (A,A). Π + Sanctity(x ≥ 0, y > 1;Π) =

2 + x −1 + y
1 0

, which from Appendix C.1 we know is stable for Π, does not induce a coordination

game, it induces a game in which A is the dominant action. Hence, Sanctity(x ≥ 0, y > 1;Π) changes
the best response function relative to Π, but it does not change the fitness-maximizing equilibrium,
which continues being (A,A).

30Definition 13 restricts attention to symmetric equilibria: this restriction is standard in the
literature and is adopted by Dekel et al. (2007), among others.
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4 Interpretation

In this section, we discuss several interpretive points of our theory.

Moral principles can evolve through genetic transmission, individual

development, or interpersonal transmission The concept of evolutionary

stability laid out in Definition 7 is abstract enough to encompass several possible

channels of evolutionary transmission. First, and conceptually simpler, individuals

who adopt a moral principle m that is unfit in some game Π will have below-average

fitness on average across all the games they play, potentially fewer offspring, and so

evolution will select against moral principle m in game Π. This genetic transmission

mechanism is one way to account for the inheritability of moral principles documented

by Zakharin and Bates (2023). For this mechanism to work, all individuals in society

must play the same games with the same frequency.

Also, moral principles could be selected through individual development by

reinforcement, from youth through adulthood, of those moral principles which perform

well in each game type. This mechanism has a counterpart in theories such as Piaget’s

theory of moral development. We adopted this interpretation in Section 3.4. Finally,

the moral principles of successful (in fitness terms) peers could be adopted through

a process of social imitation. The theory we develop does not seek to discriminate

between these three transmission mechanisms.

Morality is game-specific Regardless of the specific mechanism through which

evolution operates, the model allows a moral principle to be stable in one fitness game

type and not in another. For example, Authority is stable in some cooperation games

but not in the Prisoners’ Dilemma game. In this sense, stable moral principles are

game-specific. Empirically, this means that evolution has predisposed us to apply

different moral principles depending on the environment in which we operate. This

seems realistic. With this being said, there are two moral principles, Fairness and

Loyalty, each of which is stable for every Π. So, the accurate statement is that the set

of moral preferences that are stable varies with Π.

What makes a moral principle evolutionarily stable Moral principles are not

stable because they improve fitness. Indeed, it is possible for a moral principle to

be stable without improving fitness: as mentioned following Definition 13, in many
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fitness game types Π, the moral principles that are stable do not improve fitness above

the best Nash equilibrium for Π. Hence, moral principles can be evolutionarily stable

even if they do not improve fitness.31 However, stable moral principles can never have

lower fitness than the best Nash equilibrium for Π.32 This observation helps put into

perspective the role that morality plays in this paper.

While fitness maximization is to some extent “built into” Definition 7, our

definition of stability, fitness maximization is not a sufficient condition for stability.

For moral principles to be stable, they must also not be a liability in the competition

against mutants.

Moral pluralism Moral pluralism is the notion that different individuals in the

same situation (meaning, in our theory, the same fitness game) might hold different

moral principles. Our results support this view because, in all fitness games, many

moral principles in the 5m’s are simultaneously evolutionarily stable. However, our

theory does not support moral agnosticism: not all moral principles are evolutionarily

stable in all fitness games.

Justifying the observability of moral principles An important assumption in

our theory is that moral principles are observable to the opponent.33 How valid is

this assumption? If, as is plausible, the evolutionary process took place in small

communities over many millennia, it makes sense that individuals in these communities

might have a good sense of the moral makeup of the people they were interacting

with. Not suprisingly, perhaps, Helzer et al. (2014) provide experimental support

for the hypothesis that one’s moral makeup is accurately assessed by those that one

interacts with: the authors document that experimental subjects assessed their own

moral character in a way that aligned with the assessment of the subjects’ friends,

family members, and acquaintances.34

We acknowledge that this justification for observability raises the possibility of

31For example, for Π’s with a > c and b > c, the only Nash equilibrium is fitness maximizing.
Nonetheless, Fairness is stable for Π and, for some values of x, y, creates other Nash equilibria that
are not fitness maximizing.

32This follows from Proposition 2 in Dekel et al. (2007).
33This is an important difference with Alger and Weibull (2013), who do not make this assumption.

Rather, they assume assortative matching along similar “moral types.”
34Unfortunately, the Moral Character Questionnaire used to elicit moral traits in Helzer et al.

(2014) is somewhat different from Haidt’s Moral Foundations Questionnaire. We are unaware of a
similar study done using the latter questionnaire.
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repeated interaction. Our analysis assumes that players play the one-shot Nash

equilibrium, but if players interact repeatedly, more complex dynamic strategies are

available. In a repeated interaction setting, our analysis continues to hold verbatim

if players who interact repeatedly play (the same) “stage Nash” equilibrium in every

game. In ongoing research, Avataneo explores a repeated interaction setting where

moral principles evolve among players who play dynamic strategies, including trigger

strategies.

Telling moral principles apart based on surveys An interpretation of Theorem

1 is that, in the real world, one could find a setting Π where a survey respondent

would be able to articulate the difference between any two given moral principles in

the 5m’s. Moreover, Theorem 1 also says that the two moral principles may be chosen

to be evolutionarily stable given Π. We interpret this property as saying that, in the

real world, for any two elements of the 5m’s, one could find a setting Π and two survey

subjects in the population of evolutionary incumbents, who would answer the question

“what do I feel is the right thing do in this case” differently.

Telling moral principles apart based on equilibrium play Although all

evolutionarily stable moral principles prescribe the same action when playing against

an opponent who holds an evolutionarily stable moral principle in that game,35 the

difference between stable moral principles can be detected in equilibrium play against

mutants. This was shown in Section 3.1. In our theory, then, the difference between

stable moral principles manifests, in action, when playing against individuals holding

“uncommon” or “deviant” moral principles.

Moral dilemmas Moral dilemmas might be defined as situations in which two

people holding different moral principles would choose different actions. In our theory,

it is possible for two players i and i′ holding moral principlesm andm′ to act differently

35 This is because, by definition, all stable preferences must i) generate the same average fitness
and ii) that average fitness must be larger than that of any mutant who enters the population in a
small proportion. For these conditions to be satisfied, all stable preferences must play the fitness-
maximizing outcome against each other. If the stable preferences where not all playing the fitness-
maximizing action against each other, i) the average fitness wouldn’t be the same, violating the same
average fitness condition, or ii) there would be a mutant that does play the fitness-maximizing action
against itself and plays against the incumbents whatever the incumbents are playing against each
other, violating the larger average fitness than any mutant condition. For more detail see Dekel et al.
(2007)’s Proposition 2.
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in the same game Π, provided that they are playing against a (judiciously chosen)

mutant.36 In this admittedly abstract sense, our theory allows for the existence of

moral dilemmas.

Different from internalized norms We define “internalized norms” as incentives

that modify a player’s fitness-maximizing behavior and exist only in the player’s mind,

not in the physical world. According to Coleman (1994),37 not all norms are, or can be,

internalized: for a norm to be internalized by agent i, there must be other agent(s) −i

who benefit from, and promote the internalization. In this view, norms are internalized

by agent i “in the shadow” of physical-world pressure by other players who are affected

by player i’s behavior. This pressure may come from formal laws, and/or from informal

punishment meted out in repeated interaction.

In a sense, moral principles in our theory could be interpreted as internalized

norms, in that they modify a player’s fitness-maximizing behavior and exist only in

the player’s mind. However, in our theory, it is not the presence of externalities that

causes these psychological incentives to “embed” in the players’ minds. In fact, in

our theory, moral principles can be evolutionarily stable even if they do not improve

the opponents’ (or society’s) equilibrium fitness. Moreover, in our theory, repeated

interaction is not present.

One advantage of our evolution-based theory, over a theory where internalization

pressure comes from punishment in repeated interaction, is predictive power. If

the internalization pressure is formalized as out-of-equilibrium punishment by the

opponent(s) in a repeated game,38 a potential concern is that too many of player i’s

non-fitness maximizing strategies can be supported by a suitable choice of punishment

by players −i. That is, if the set of internalizable norms is taken to be “all the

equilibrium strategies that can be sustained in a repeated game setting,” then this set

is vast because of the multiplicity of self-enforcing strategies in a repeated game. By

contrast, in our theory, the mechanism of evolutionary selection limits the set of moral

principles that are stable for any given Π. Indeed, many moral principles (whether in

the 5m’s or not) are not stable.39

36The reason why differences in equilibrium play only manifest themselves in play against mutants
is discussed in the previous paragraph; refer also to footnote 35.

37Our discussion of internalized norms follows Coleman (1994), page 292 and ff.
38As in Voss (2001).
39These are the moral principles that only span non-stable preferences in the theory of Dekel et al.

(2007).

27



Different from group selection We use a concept of evolutionary stability that

is based on individual selection, and not on group selection à la Bowles and Gintis

(2011). This is good because group selection is controversial.40

Ranking the 5m moral principles according to simplicity Which moral

principles among the 5m’s are “informationally simpler,” in the sense that less

information about the fitness matrix Π is required in order to generate the moral

proclivity matrix, i.e., to know where to place x and y in M? The simplest principles

are Sanctity, Fairness, and Authority because knowledge of only two numbers, (a and d

for Sanctity, b and c for Fairness and Authority), is required in order to know where in

the moral proclivity matrix to place x and y. Care and Loyalty require full knowledge

of the matrix Π.

Robustness to perturbations of x and y In some fitness games Π, there are

moral principles m(x, y; ·) that are stable only for very specific values of x, y; in other

games, or for other moral principles, stability holds for generic x, y ≥ 0. This property

of robustness to perturbations of x and y is, perhaps unsurprisingly, linked to a similar

property: compatibility with moral overdrive. Indeed, it can be shown that any

m(x, y; ·) ∈ 5m that is compatible with moral overdrive for game Π, is also stable

for game Π for any x, y ≥ 0.41

5 Conclusions

It is commonly argued that human morality has been shaped, at least in part, by

evolutionary pressures. This paper asks: what kind of moral principles emerge from

and survive an evolutionary process?

We have focused on five distinct moral principles that have been identified by

recent empirical scholarship (Moral Foundations Theory, Graham et al. 2009): Care,

Fairness, Authority, Loyalty, and Sanctity. These principles are elicited through

surveys, and individuals vary in the emphasis they place on each of these principles.

We have provided a theory in which these five moral principles are operationalized

as mathematical functions that, for each distinct “fitness” game that agents play,

produces a “moral proclivity” which shapes behavior.

40See Robson (2017).
41See Lemma 4 in the appendix
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We have shown that any two moral principles are distinguishable from each other

in that they shape behavior differently; and that, together, these five moral principles

are sufficient to generate all moral proclivities that can ever be evolutionarily stable.

However, we have also shown that these five moral principles are somewhat redundant,

in that two proper subsets of them are each rich enough to generate all evolutionarily

stable moral proclivities.

We have shown that a designer who seeks to maximize fitness by designing a moral

code based on the fewest number of principles will only need to include Fairness or

Loyalty in the moral code. Finally, we have asked whether any of these moral principles

can be “blown out of proportion” and still be evolutionary stable: the answer is yes,

but, when this is the case, these moral principles do not improve fitness relative to

fitness-maximizing equilibrium play.

The evolutionary model analyzed here need not apply only to genetic transmission

across generations: it could also capture cultural transmission across generations, or

to the adoption within the lifetime of a single individual of values that are rewarded

by society. Indeed, the analysis relies on an individual selection mechanism, and not

on group selection.

This paper provides theoretical support for three commonly made (but not

rigorously justified) claims: that people can be moved by several (i.e., more than

one) distinct moral principles; that people in the same society vary in the emphasis

they place on these principles; and that these principles emerge from an evolutionary

process.
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Appendices

A Mathematical definition of the 5m moral

principles

This section provides the mathematical definition of each of the 5m’s moral principles.

Let the fitness matrix be denoted by

Π =
A B

A a b

B c d

,

which induces the fitness game

G =
A B

A a,a b,c

B c,b d,d

.

Without loss of generality, it is assumed a ≥ d. Furthermore, in what follows we

stipulate x, y ≥ 0.

A.1 Care

Care is defined as boost, with x or y, the entry which for a given opponent’s action,

makes the opponent best off. Hence, the comparisons that need to be made are a ⪌ b

and c ⪌ d. The formal definition is:

Care(x, y; Π) =



x y

0 0
if a > b and c > d

x 0

0 y
if a > b and d > c

0 y

x 0
if b > a and c > d

0 0

x y
if b > a and d > c

In the non-generic case of a = b, replace x with 0, and in the non-generic case of

c = d, replace y with 0.
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A.2 Fairness

Fairness is defined as boost, with x or y, the entry which for a given opponent’s

action has the most equal payoffs. Hence, the comparisons that need to be made are

|a − a| ⪌ |c − b| and |b − c| ⪌ |d − d|, which reduce to checking if |c − b| is equal or
different from 0. The formal definition is:

Fairness(x, y; Π) =


x 0

0 y
if |c− b| ≠ 0

0 0

0 0
if |c− b| = 0

A.3 Authority

Authority is defined as boost, with x or y, the entry which for a given opponent’s action

makes the agent best off relative to her opponent. Hence, the comparisons that need

to be made are a− a ⪌ c− b and b− c ⪌ d− d, which reduce to checking b− c ⪌ 0.

The formal definition is:

Authority(x, y; Π) =



x y

0 0
if b− c > 0

0 0

x y
if b− c < 0

0 0

0 0
if b− c = 0

A.4 Loyalty

Loyalty is defined as boost, with x or y, the entry which rewards the opponent who takes

the Kantian action and punishes the opponent who does not. Hence, the comparisons

that need to be made are a ⪌ b and c ⪌ d. The formal definition is:
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Loyalty(x, y; Π) =



x 0

0 y
if a > b and c > d

x y

0 0
if a > b and d > c

0 0

x y
if b > a and c > d

0 y

x 0
if b > a and d > c

In the non-generic case of a = b, replace x with 0, and in the non-generic case of

c = d, replace y with 0.

A.5 Sanctity

The sanctity moral principle is defined as boost, with x or y, the entry which corresponds

to the Kantian action regardless of the opponent’s action. Since a > d by assumption,

the Kantian action is A. The formal definition is:

Sanctity(x, y; Π) = x y

0 0
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B Online Appendix: Consistency with prior

operationalizations of the moral foundations

Each operationalization of the moral foundations we use in this paper has been

previously analyzed in either the economics and/or psychology literature. This section

explores the connection between our operationalization of the moral foundations and

the existing literature.

B.1 Care

Care is usually understood as selfless service on behalf of others. A preference for

serving others for their own benefit is altruism. In economics, we usually say an

agent is altruistic if her preferences reflect some concern for other players’ welfare.

For example, in Bester and Guth (1998), agent i is said to hold altruistic preferences

towards agent j if her preference function is

Pi = αΠi + (1− α)Πj ,

where Πi is the fitness of agent i and Πj is the fitness of agent j. Assuming there are

only two possible pure actions (A and B), we get that the altruistic preference matrix

is:

P = α a b

c d
+ (1− α) a c

b d

which is strategically equivalent to

P = a b

c d
+

1− α

α
a c

b d

Hence, a person has altruistic preferences if P = Π+M , where M = 1−α
α

a c

b d
.

Next, we show that this M is a special case of our Care moral principle. Indeed:

1. If a > b and c > d, the M moral proclivity matrix above is strategically

equivalent to
1−α
α

(a-b) 1−α
α

(c-d)

0 0
, which is x y

0 0
for a particular value of x and

y. That moral proclivity matrix is the one generated by Care when a > b and

c > d.

2. If a > b and d > c, the M moral proclivity matrix above is strategically

equivalent to
1−α
α

(a-b) 0

0 1−α
α

(d-c)
, which is x 0

0 y
for a particular value of x and
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y. That moral proclivity matrix is the one generated by Care when a > b and

d > c.

3. If b > a and c > d, the M moral proclivity matrix above is strategically

equivalent to 0 1−α
α

(c-d)
1−α
α

(b-a) 0
, which is 0 y

x 0
for a particular value of x and

y. That moral proclivity matrix is the one generated by Care when b > a and

c > d.

4. If b > a and d > c, the M moral proclivity matrix above is strategically

equivalent to 0 0
1−α
α

(b-a) 1−α
α

(d-c)
, which is 0 0

x y
for a particular value of x and

y. That moral proclivity matrix is the one generated by Care when b > a and

d > c.

Thus, when there are only two pure actions {A,B} our operationalization of Care is

a generalization of the altruism operationalization in Bester and Guth (1998).

B.2 Fairness

There are several definitions of Fairness, one of them being a preference for equality. To

our knowledge, in the economics literature, this preference was first operationalized by

Fehr and Schmidt (1999), who say that agent i has “inequality aversion” when playing

against agent j if

Pi = Πi − αimax{Πj − Πi, 0} − βimax{Πi − Πj, 0}.

If αi = βi, the above preference can be rewritten as

Pi = Πi − αi|Πi − Πj|.

Assuming there are only two possible pure actions (A andB), we get that the inequality

averse preference matrix is:

Pi =
a b

c d
- αi

|a− a| |b− c|
|c− b| |d− d|

,

which is strategically equivalent to

Pi =
a b

c d
+ αi|c− b| 0

0 αi|b− c|
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Hence, a person has inequality aversion preferences if P = Π + M , where M =
αi|c− b| 0

0 αi|b− c|
. Note this is a special case of x 0

0 y
, which is exactly the moral

proclivity matrix generated by our Fairness moral principle.

B.3 Authority

Arguably, a natural definition of Authority, and the one Haidt (2012) favors, is respect

for the social hierarchy. However, our model is not rich enough to capture a social

hierarchy. Instead, the operationalization we use captures only the power aspect of a

hierarchical relationship: it captures the drive humans have to be better than others in

relative terms. This drive has been discussed for many years in philosophy, psychology,

economics and finance. It is colloquially refered to as “the Verben effect” or the

“Staying ahead of the Joneses effect.” The same operationalization of the preference

for doing better than others appears in Messick and Sentis (1985) and in Ordóñez et

al. (2000). It is the following:

Pi = fi(Πi) + gi(Πi − Πj)

If we take fi(x) = x and gi(x) = αix, the above preference can be rewritten as

Pi = Πi + αi(Πi − Πj)

Assuming there are only two possible pure actions (A and B), we get that the

preference above can be written as:

Pi =
a b

c d
+ αi

0 b-c

c-b 0

Hence, a person has a preference for doing better than others if P = Π + M , where

M = 0 αi(b− c)

αi(c− b) 0
. Note thatM is a special case of our Authority moral principle.

Indeed:

1. If b > c , the M moral proclivity matrix above is strategically equivalent to
αi(b-c) αi(b-c)

0 0
, which is x y

0 0
for a particular value of x and y. That moral

proclivity matrix is the one generated by Authority when b > c.

2. If c > b , the M moral proclivity matrix above is strategically equivalent to
0 0

αi(c-b) αi(c-b)
, which is 0 0

x y
for a particular value of x and y. That moral

proclivity matrix is the one generated by Authority when c > b.
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B.4 Loyalty

A natural definition of loyalty is behaving kindly towards those who one considers

part of an “in-group”, and spitefully towards those who one considers part of an

“out-group”. Our theory does not feature a notion of in- and out-groups, but if we

interpret the out-group as “someone who does not choose the Kantian action,” then

our definition of Loyalty is close to a preference for reciprocity as defined by Segal

and Sobel (2007). They extend preferences over outcomes to include preference over

strategies. In their formulation, an agent has reciprocity preferences if her preferences

are of the form:

Pi = Πi + aji (σi, σj)Πj

where aji (σi, σj) is the weight agent i places on the fitness of agent j. The weight can

be positive or negative and it depends on the strategies. In particular, we could have

aji (σi, σj) > 0 if σj is the Kantian action and aji (σi, σj) < 0 if σj is not the Kantian

action, in which case Segal and Sobel (2007)’s reciprocity preferences would be the

same as the preferences generated to our Loyalty moral principle. Assuming there

are only two possible pure actions (A and B), and aji (σi, σj) = ρ > 0 when σj is the

Kantian action, and aji (σi, σj) = −δ < 0 when σj is not the Kantian action, we get

that the reciprocity preference matrix is:

Pi =
a b

c d
+ ρ a -δ c

ρ b - δ d

Hence, an agent has preferences for reciprocity if her preference is P = Π+M , where

M = ρ a -δ c

ρ b - δ d
. Note this M above is a special case of our Loyalty moral principle,

because:

1. If a > b and c > d, the M moral proclivity matrix above is strategically

equivalent to ρ(a-b) 0

0 δ(c-d)
, which is x 0

0 y
for a particular value of x and y.

This moral proclivity matrix is the one generated by Loyalty when a > b and

c > d.

2. If a > b and d > c, the M moral proclivity matrix above is strategically

equivalent to ρ(a-b) δ(d-c)

0 0
, which is x y

0 0
for a particular value of x and y.

That moral proclivity matrix is the one generated by Loyalty when a > b and

d > c.
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3. If b > a and c > d, the M moral proclivity matrix above is strategically

equivalent to 0 0

ρ(b-a) δ(c-d)
, which is 0 0

x y
for a particular value of x and y.

That moral proclivity matrix is the one generated by Loyalty when b > a and

c > d.

4. If b > a and d > c, the M moral proclivity matrix above is strategically

equivalent to 0 δ(c-d)

ρ(b-a) 0
, which is 0 y

x 0
for a particular value of x and y.

That moral proclivity matrix is the one generated by Loyalty when b > a and

d > c.

Although, not exactly the same, the same flavor of preferences can also be found in

Charness and Rabin (2002). In that paper, if the the opponent misbehaves, the agent

is spiteful, and if the opponent behaves well, the agent is altruistic. However, the

opponent is deemed to have behaved well or badly based on outcomes – not strategies.

B.5 Sanctity

The term Sanctity is commonly used in reference to organized religion. However, in

the ethnographic literature, the term is also used in reference to notions of purity

of behavior such as not defiling the environment, or not eating certain foods, or

performing sacrifices. The ethnographic literature is split over whether the actions

that are deemed pure (either religiously or culturally) are in fact pro-social or, rather,

they emerge arbitrarily out of cultural accident. In our operationalization of Sanctity,

we adopt the view that Sanctity is pro-social.

Our operationalization of Sanctity is the same as Alger and Weibull (2013)’s

operationalization of “homo moralis”. According to Alger and Weibull (2013), an

agent is “homo moralis” if her preference is:

Pi = Πi(σi, σj) + ΘΠi(σi, σi)

where σi is the action chosen by agent i, and σj is the action chosen by agent j.

Assuming there are only two possible pure actions (A and B), we get that the

“homo moralis” preference matrix is:

Pi =
a b

c d
+Θ a a

d d
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Hence, an agent is homo moralis if her preference is P = Π + M , where M =

Θ a a

d d
. Note, that when a > d, the above moral proclivity matrix M is a special

case of x y

0 0
, which is exactly the moral proclivity matrix generated by our Sanctity

moral principle.
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C Online Appendix: Stability Tables

The stability tables in this section show:

1. for each fitness game, all its stable preferences;

2. for each stable preference in that game, all the moral proclivity matrices that

can span it;

3. for each stable moral proclivity matrix in that game, all the 5m’s moral principles

that can generate it.

Before presenting the tables, we explain how they were constructed.

First Column

The first column is taken directly form Dekel et al. (2007)’s Proposition 4. That

proposition characterizes, for every 2 × 2 fitness game, all the evolutionarily stable

preferences.

Second Column

The second column is constructed by checking, for each stable preference P , which

moral proclivity matrices M(x, y) are such that Π+M(x, y) is strategically equivalent

to P . There are 4 possible moral proclivity matrices:

M1 =
x y

0 0
, M2 =

x 0

0 y
, M3 =

0 0

x y
, M4 =

y y

x 0
.

For each moral proclivity matrix, we back out which values of x and y make Π +M

strategically equivalent to P . The moral proclivity matrix M and the values of x and

y that achieve strategic equivalence appear in the table. If no value of x or y make

Π + M strategically equivalent to P , M does not appear in the second column of

stability table of Π.

For example, for Π with a > c and d > b, we know from Dekel et al. (2007)

that any preference strategically equivalent to AA = 1 1

0 0
is evolutionarily stable.

Hence, in the stability table representing those Πs, which is Stability Table C.1, the

row corresponding to AA, only contains M1 and M4 because:

� For x ≥ 0 and y > d − b, Π +M1 = a+ x b+ y

c d
is strategically equivalent to

AA.

� For 0 ≤ x < a−c and y > d−b, Π+M4 =
a b+ y

c+ x d
is strategically equivalent

to AA.
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� There are no values of y ≥ 0 such that, for Π+M2 =
a+ x b

c d+ y
and Π+M3 =

a b

c+ x d+ y
, b > d+ y. Hence, there are no values of x, y ≥ 0 for which Π+M2

or Π +M3 are strategically equivalent to AA.

Third Column

Every sub-column of the third column is constructed by checking, for each stable moral

proclivity matrix, which of the 5m’s moral principles generate it. To figure which of

the 5m’s moral principles generate the stable moral proclivity matrices, the complete

parameter ordering of a, b, c, d is needed. Each sub-column of column 3 represents one

such parameter orderings.

For example, in the third sub-column of column 3 in Stability Table C.1, which

corresponds to parameter ordering a > d > c > b, we can find the 5m’s moral principles

which generate the stable moral proclivity matrices M1 and M4 for such fitness games.

Sanctity and Loyalty can generate M1, so they appear in the row corresponding to

M1. For Πs with a > d > c > b, no 5m moral principle can generate moral proclivity

matrix M4, so the word “None” appears in the row corresponding to M4.

We are now ready to present the tables.
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C.1 Coordination game: a>c, d>b

5ms that generate stable moral proclivities

Stable preferences Stable moral proclivities The x and y satisfy the inequalities in the previous column

a>c>d>b a>d>b>c a>d>c>b

Sanctity(x,y),

Care(x,y)

Sanctity(x,y),

Authority(x,y),

Loyalty(x,y)

Sanctity(x,y),

Loyalty(x,y)

x y x≥0

AA 0 0 y>d-b

1 1

0 0

None None None
0 y x<a-c

x 0 y>d-b

Fairness(x.y),

Loyalty(x,y)

Fairness(x.y),

Care(x,y)

Fairness(x.y),

Care(x,y)

x 0 x≥max{0, 1-α
α

(d-b)-(a-c)}
0 y y= 1-α

α
(a-c+x)-(d-b)

Stable only for α ∈ (0, d−b
d−b+a−c

]

Sanctity(x,y),

Care(x,y)

Sanctity(x,y),

Authority(x,y),

Loyalty(x,y)

Sanctity(x,y),

Loyalty(x,y)
x y x≤ 1-α

α
(d-b)-(a-c)

ABα 0 0 y=(d-b)- α
1-α

(a-c+x)

with α ∈ (0, 1)

1−α 0 Stable only for α ∈ [ d−b
d−b+a−c

, 1)

Authority(x,y) None Authority(x,y)
0 α

0 0 x≤(a-c)- 1-α
α

(d-b)

x y y= α
1-α

(a-c-x)-(d-b)

None None None
0 y max{0,a-c- 1-α

α
(d-b)}≤x<a-c

x 0 y=(d-b)- α
1-α

(a-c+x)

None None None
0 y x=a-c

AB1 x 0 y<d-b

0 0

0 1

Authority(x,y) None Authority(x,y)
0 0 x=a-c

x y y≥0

Sanctity(x,y),

Care(x,y)

Sanctity(x,y),

Authority(x,y),

Loyalty(x,y)

Sanctity(x,y),

Loyalty(x,y)

x y x≥0

AB0 0 0 y=d-b

1 0

0 0

None None None
0 y x<a-c

x 0 y=d-b

BA1

None None None
0 1 0 y x=a-c

0 0 x 0 y>d-b

θ0

None None None
0 0 0 y x=a-c

0 0 x 0 y=d-b
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C.2 Games in which (A,A) is the fitness-maximizing strategy

profile, A is a dominant strategy and a is the highest

possible payoff: a>c, b>d, a>b

5ms that generate stable moral proclivities

Stable preferences Stable moral proclivities The x and y satisfy the inequalities in the previous column

a>c>b>d a>b>d>c a>b>c>d

Sanctity(x,y),

Care(x,y)

Sanctity(x,y),

Loyalty(x,y),

Authority(x.y)

Sanctity(x,y),

Care(x,y),

Authority(x.y)

x y x≥0

0 0 y≥0

Fairness(x.y),

Loyalty(x,y)

Fairness(x.y),

Care(x,y)

Fairness(x.y),

Loyalty(x,y)

x 0 x≥0

0 y y<b-d

AA
1 1

Authority(x.y) None None
0 0 0 0 x<a-c

x y y<b-d

None None None
0 y x<a-c

x 0 y≥0

Authority(x,y) None None
ABα 0 0 x<a-c

with α ∈ (0, 1) x y y= α
1−α

(a-c-x)+(b-d)

1−α 0

0 α

Fairness(x.y),

Loyalty(x,y)

Fairness(x.y),

Care(x,y)

Fairness(x.y),

Loyalty(x,y)

x 0 x≥0

0 y y= α
1−α

(a-c+x)+(b-d)

AB1

Authority(x,y) None None
0 0 0 0 x=a-c

0 1 x y y>b-d

Authority(x,y) None None
0 0 x<a-c

AB0 x y y=b-d

1 0

0 0

Fairness(x.y),

Loyalty(x,y)

Fairness(x.y),

Care(x,y)

Fairness(x.y),

Loyalty(x,y)

x 0 x≥0

0 y y=b-d

Authority(x,y) None None
0 0 x=a-c

BA1 x y y<b-d

0 1

0 0

None None None
0 y x=a-c

x 0 y≥0

θ0

Authority(x,y) None None
0 0 0 0 x=a-c

0 0 x y y=b-d
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C.3 Games in which (A,A) is the fitness-maximizing strategy

profile and A is a dominant strategy but a is not the

highest possible payoff: a>c, b>d,b>a

5ms that generate stable moral proclivities

Stable preferences Stable moral proclivities The x and y satisfy the inequalities in the previous column

b>a>c>d b>a>d>c

Sanctity(x,y),

Authority(x.y)

Sanctity(x,y),

Authority(x.y)

x y x≥0

0 0 y≥0

Fairness(x.y), Fairness(x.y),
x 0 x≥0

0 y y<b-d

AA
1 1

Loyalty(x,y) Care(x,y)
0 0 0 0 x<a-c

x y y<b-d

Care(x.y) Loyalty(x.y)
0 y x<a-c

x 0 y≥0

Loyalty(x,y) Care(x,y)
ABα 0 0 x<a-c

with α ∈ [0, a−d
b−d

) x y y= α
1−α

(a-c-x)+(b-d)

1−α 0

0 α

Fairness(x.y) Fairness(x.y)
x 0 x≥0

0 y y= α
1−α

(a-c+x)+(b-d)

C.4 Prisoners’ Dilemma games in which (A,A) is the fitness-

maximizing strategy profile: c>a>d>b

5ms that generate stable moral proclivities

Stable preferences Stable moral proclivities The x and y satisfy the inequalities in the previous column

c>a>d>b

Sanctity(x,y), Care(x,y)
x y x=c-a

AB1 0 0 y<d-b

0 0

0 1

Fairness(x,y), Loyalty(x,y)
x 0 x=c-a

0 y y≥0
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C.5 Hawk-Dove games in which (A,A) is the fitness-

maximizing strategy profile: c>a>b>d

5ms that generate stable moral proclivities

Stable preferences Stable moral proclivities The x and y satisfy the inequalities in the previous column

c>a>b>d

AB1

Fairness(x,y), Loyalty(x,y)
0 0 x 0 x=c-a

0 1 0 y y>b-d

C.6 Pure-common value Hawke-Dove games: c=b>a>d

5ms that generate stable moral proclivities

Stable preferences Stable moral proclivities The x and y satisfy the inequalities in the previous column

c=b>a>d

ABα

None
α 0 x 0 x=2(c-a)

0 1-α 0 y y=2(b-d)

with α= b-d
c-a+b-d

C.7 All other games

From Dekel et al. (2007) we know no other game has a stable preference.
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D Online Appendix: Proofs

D.1 Proofs for Section 2

Lemma 3 (moral proclivity matrices span the set of all preferences). Fix any

pair of 2× 2 matrices Π, P . There exists a matrix P ′ that is strategically equivalent to

P and a moral proclivity matrix M(x, y) such that Π+M(x, y) = P ′.

Proof We proceed by constructing, for each possible P , a suitable matrix M(x, y).

Case 1: P is strategically equivalent to ABα with α ∈ [0, 1]

Let M(x, y) = x 0

0 y
with x = L(1 − α) − (a − c) and y = Lα − (d − b). If L >

max{ a−c
1−α

, d−b
α
, 0}, x and y are both positive and Π +M(x, y) = L(1− α) + c b

c b+ Lα
is

strategically equivalent to ABα.

Case 2: P is strategically equivalent to BAα with α ∈ [0, 1]

Let M(x, y) = 0 y

x 0
, with x = L(1 − α) − (c − a) and y = Lα − (b − d). If

L > max{ c−a
1−α

, b−d
α
, 0}, both x and y are positive and Π+M(x, y) = a d+ Lα

a+ L(1− α) d

is strategically equivalent to BAα.

Case 3: P is strategically equivalent to AA
Let M(x, y) = x y

0 0
. If x > |c − a| and y > |d − b|, both x and y are positive and

Π +M(x, y) = a+ x b+ y

c d
is strategically equivalent to AA.

Case 4: P is strategically equivalent to BB
Let M(x, y) = 0 0

x y
. If x > |a − c| and y > |b − d|, both x and y are positive and

Π +M(x, y) = a b

c+ x d+ y
is strategically equivalent to BB.

Case 5: P is strategically equivalent to θ0

1. If a ≥ c and b ≥ d, let M(x, y) = 0 0

a− c b− d
. Then Π + M(x, y) = a b

a b
is

strategically equivalent to θ0.

2. If a ≥ c and d ≥ b, let M(x, y) = 0 d− b

a− c 0
. Then Π + M(x, y) = a d

a d
is

strategically equivalent to θ0.
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3. If c ≥ a and b ≥ d, let M(x, y) = c− a 0

0 b− d
. Then Π + M(x, y) = c b

c b
is

strategically equivalent to θ0.

4. If c ≥ a and d ≥ b, let M(x, y) = c− a d− b

0 0
. Then Π + M(x, y) = c d

c d
is

strategically equivalent to θ0.

□

D.2 Proofs for Section 3.1

Proof of Theorem 1 From Stability Table C.1, we know the following:

1. For fitness games with a > c > d > b: only Sanctity and Care can span AA and

only Fairness, Authority and Loyalty can span ABα with α ∈ [ d−b
d−b+a−c

, 1).

2. For fitness games with a > d > c > b: only Sanctity and Loyalty can

span AA and only Fairness, Authority and Care can span ABα with α ∈
[ d−b
d−b+a−c

, 1). Furthermore, all foundations except Authority can span ABα with

α ∈ [0. d−b
d−b+a−c

), but only Authority can span AB1.

Together, points 1 and 2 above imply every 5m moral principle is pairwise

distinguishable. □

D.3 Proofs for Section 3.2

Proof of Lemma 1 Let Π = 2 0

−1 1
. This is a coordination game with a > d >

b > c. From Stability Table C.1 we know that, for this game, Care and Fairness span

P1 = Π+M1 =
2 0

-1 1
+ x 0

0 y
= 2+ x 0

-1 1+ y

and Authority, Sanctity and Loyalty span

P2 = Π+M2 =
2 0

-1 1
+ x y

0 0
= 2+ x y

-1 1
.

For no values of x, y ≥ 0 can P1 or P2 be strategically equivalent to

P ′ = 0 y

x 0
.

□
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Proof of Theorem 2 From Stability Tables C.1 and C.2, we know that for all games

in these tables, all evolutionarily stable preferences are strategically equivalent to an

element of the set

ES = {AA,ABα with α ∈ [0, 1],BA1, θ0}.

The lowest-dimensional vector space containing ES has dimension 4, as one needs

4 parameters to describe some preferences. From Stability Tables C.1 and C.2 we also

know that the only preferences that can’t be spanned by any of the principles in the

5m are preferences strategically equivalent to one element of the set

NG = {AB1,BA1, θ0}.

The lowest-dimensional vector space containing NG has dimension 3, as one needs

at most 3 parameters to describe all preferences in the set. Hence, the set of

preferences not spanned by the 5m, NG, is non-generic in the set of evolutionarily

stable preferences ES.

From Stability Tables C.3, C.4 and C.5, we know that for all fitness games

represented on those tables, the 5m span the entire set of evolutionarily stable

preferences.

The remaining fitness games are either the pure-common value Hawk-Dove game,

which is non-generic in the space of 2x2 matrices, or fitness games which do not have

any evolutionarily stable preferences.

Hence, since graphs inherit the genericity properties of both their domain and the

range, ES\5M is non-generic in ES. □

D.4 Proofs for Section 3.3

Proof of Theorem 3 From Stability Tables C.1 and C.2 and from the proof of

Theorem 2 we know that, for the fitness games represented in those tables, the set of

generic evolutionarily stable preferences are all preferences strategically equivalent to

one element of

ES\NG = {AA,ABα with α ∈ (0, 1)}.

Sufficiency

To prove that ES\D is non-generic in ES, we must show that both
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{Sanctity, Fairness} and {Care, Loyalty} are sufficient to span all generic

evolutionarily stable preferences for all generic fitness games.

As can be seen in Stability Tables C.1 and C.2, for all fitness games represented in those

tables, Sanctity spans AA and Fairness spans ABα with α ∈ (0, 1). Furthermore,

either Care spans AA and Loyalty spans ABα with α ∈ (0, 1), or Loyalty spans AA
and Care spans ABα with α ∈ (0, 1). For the fitness games represented in Stability

Tables C.3, C.4 and C.5, Fairness spans all stable preferences, and whenever Care

can’t span some stable preference, Loyalty can. Since all other fitness games are either

non-generic in the space of 2× 2 matrices or do not have any stable preferences, both

{Fairness, Sanctity} and {Care,Loyalty} are sufficient to span all generic evolutionarily

stable preferences for all generic fitness games.

Necessity

To prove that if ES\D is non-generic in ES, D contains either FS or CL, we must

show that either {Sanctity, Fairness} or {Care, Loyalty} are necessary to span all

generic evolutionarily stable preferences for all generic fitness games.

For fitness games represented in table C.5, the set of generic evolutionarily stable

preferences is the set of all preferences that are strategically equivalent to AB1.

As can be seen in the stability table, either Fairness or Loyalty is necessary to

span AB1. For fitness game sub-type a > c > d > b, represented in the third

column of table C.1, either Sanctity or Care are necessary to span AA. Hence,

one element of {Fairness, Loyalty} and one of {Care, Sanctity} are needed to

span all generic evolutionarily stable preferences for all generic fitness games. No

element of {Loyalty, Sanctity} can span ABα with α ∈ (0, 1) for fitness games

a > b > d > c represented in the second column of Stability Table C.2, and no

element of {Care,Fairness} can span AA for fitness games a > d > b > c represented

in the second column of Stability Table C.1. Hence, either {Fairness, Sanctity} or

{Care, Loyalty} are necessary to span all generic evolutionarily stable preferences in

all generic fitness games. □

D.5 Proofs for Section 3.4

Proof of Theorem 4 From Stability Table C.5, we know that for the Hawk-

Dove fitness games represented in the table, only Fairness or Loyalty are capable

of spanning the generic evolutionarily stable preferences. Furthermore, from tables
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C.1, C.2, C.3, C.4 we know that both Fairness and Loyalty are capable of spanning

some evolutionarily stable preferences. All other fitness games are either non-generic

or do not have any stable preferences. Hence, both Fairness and Loyalty can be a

minimal moral code. □

D.6 Proofs for Section 3.5

Proof of Lemma 2 From stability stable C.1’s column 3, we know that for fitness

games with a > c > d > b, Sanctity(x, y; .) and Care(x, y; .) with x ≥ 0 and y > d− b

span those evolutionarily stable preferences that are strategically equivalent to AA.

Since x ≥ 0 and y > d− b implies kx ≥ 0 and ky > d− b for all k ≥ 1 , Sanctity and

Care are compatible with moral overdrive in those fitness games.

Similarly, from Stability Table C.1’s column 4, we know that for fitness games with

a > d > b > c, Authority(x, y; .) and Loyalty(x, y; .) with x ≥ 0 and y > d − b span

those evolutionarily stable preferences that are strategically equivalent to AA. Since

x ≥ 0 and y > d−b implies kx ≥ 0 and ky > d−b for all k > 1, Authority and Loyalty

are compatible with moral overdrive in those fitness games.

In all generic fitness games games, Fairness generates moral proclivity matrix
x 0

0 y
,which means Fairness spans preference P = a+x b

c d+y
. In fitness games

with a > c and d > b, which are represented in Stability Table C.1, for any x, y ≥ 0, P

is strategically equivalent to ABα for some α ∈ [0, 1], which, for those fitness games, is

evolutionarily stable. Since x ≥ 0 and y ≥ 0 implies kx ≥ 0 and ky ≥ 0 for all k ≥ 1,

Fairness is compatible with moral overdrive in those fitness games. □

Proof of Theorem 5 For fitness games represented in Stability Tables C.1, C.2,

C.3, the fittest symmetric strategy profile is (A,A). Furthermore, for all those fitness

games, (A,A) is already a Nash equilibrium. Hence, there does not exist a moral

principle m which can strictly improve social fitness. For fitness games represented

in Stability Table C.6, the fittest symmetric strategy profile is the mixed strategy in

which both agents play A with probability b−d
b−d+c−a

, but that mixed strategy profile is

already a Nash equilibrium. Hence, there does not exist a moral principle m which

can strictly improve social fitness. For fitness games represented in Stability Tables

C.4 and C.5, which are the Prisoners’ Dilemma and Hawk-Dove games in which (A,A)

is the fitness-maximizing strategy profile, (A,A) is not a Nash equilibrium. Hence,

there are some moral principles m that could potentially strictly improve social fitness.
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However for those games, as can be seen in the stability tables, the only stable moral

proclivity matrices require exactly x = c−a. Since x = c−a implies kx ̸= c−a for all

k ̸= 1, no moral principle is compatible with moral overdrive. All other fitness games

do not have evolutionarily stable preferences. □

D.7 Proofs for Section 4

Lemma 4. Any moral principle m that is compatible with moral overdrive for fitness

game Π, is also evolutionarily stable for fitness game Π for any x, y ≥ 0.

Proof of Lemma 4 For fitness games represented in Stability Tables C.1 and

C.2, the set of evolutionarily stable preferences is the set of preferences which are

strategically equivalent to some preferences in {AA,ABα with α ∈ [0, 1],BA1, θ0}.
For those fitness games, only moral principles which generate either moral proclivity

matrices x y

0 0
or x 0

0 y
are compatible with moral overdrive because:

� If x ≥ 0 and y > max{0, d − b}, Π + x y

0 0
= a+ x b+ y

c d
is strategically

equivalent to AA. Since x ≥ 0 and y > max{0, d − b} implies kx ≥ 0 and

ky > max{0, d− b} for all k ≥ 1, Π+ kx ky

0 0
is also strategically equivalent to

AA for all k ≥ 1.

� If x ≥ 0 and y > max{0, b − d}, Π + x 0

0 y
= a+ x b

c d+ y
is strategically

equivalent to ABα for some α ∈ [0, 1]. Since x ≥ 0 and y > max{0, b − d}
implies kx ≥ 0 and ky > max{0, b−d} for all k ≥ 1, Π+ kx 0

0 ky
is strategically

equivalent to ABβ for some β ∈ [0, 1] for all k ≥ 1.

� As can be seen in Stability Tables C.1 and C.2, for moral proclivity matrices
0 0

x y
and 0 y

x 0
to be stable, x and/or y have to be either small enough or

take a specific value. However, it is not possible for kx and ky to continue being

small or continue taking the same value as x and y for all k ≥ 1.

Hence, for fitness games represented in Stability Tables C.1 and C.2, only moral

principles that generate moral proclivity matrices x y

0 0
or x 0

0 y
are compatible

with moral overdrive. Moreover, those moral proclivity matrices are evolutionarily

stable for all x, y ≥ 0 because:
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� For fitness games represented in Stability Table C.1, if y ≤ d− b, Π + x y

0 0
=

a+ x b+ y

c d
is strategically equivalent to ABα for some α ∈ [0, 1], and if y >

d−b, Π+ x y

0 0
= a+ x b+ y

c d
is strategically equivalent to AA. Furthermore,

for y ≥ 0, Π+ x 0

0 y
= a+ x b

c d+ y
is strategically equivalent to ABα for some

α ∈ [0, 1].

� For fitness games represented in Stability Table C.2, if y < b− d, Π + x 0

0 y
=

a+ x b

c d+ y
is strategically equivalent to AA, and if y ≥ b − d, Π + x 0

0 y
=

a+ x b

c d+ y
is strategically equivalent to ABα for some α ∈ [0, 1]. Furthermore,

for y ≥ 0, Π + x y

0 0
= a+ x b+ y

c d
is strategically equivalent to AA.

Hence, for fitness games represented in C.1 and C.2, any moral principle compatible

with moral overdrive is evolutionarily stable for all x, y ≥ 0.

For fitness games represented in Stability Table C.3, the set of evolutionarily stable

preferences is the set of preferences which is strategically equivalent to some preferences

in {AA,ABα with α ∈ [0, a−d
b−d

)}. For those fitness games only moral principles which

generate moral proclivity matrix x y

0 0
are compatible with moral overdrive because:

� If x ≥ 0 and y ≥ 0, Π+ x y

0 0
= a+ x b+ y

c d
is strategically equivalent to AA.

Since x ≥ 0 and y ≥ 0 implies kx ≥ 0 and ky > 0 for all k ≥ 1, Π + kx ky

0 0
is

also strategically equivalent to AA.

� From Stability Table C.3, we know moral proclivity x 0

0 y
with x ≥ 0 and

y = α
1−α

(a − c + x) + (b − d) spans ABα. So if x = 0 and y ∈ [b − d, b −
d + (a−d)

(b−a)
(a − c)), Π + x 0

0 y
= a+ x b

c d+ y
is strategically equivalent to ABα

for some α ∈ [0, a−d
b−d

). However, ky > b − d + (a−d)
(b−a)

(a − c) for a large k, so

Π + kx 0

0 ky
= a+ kx b

c d+ ky
is strategically equivalent to ABα with α > a−d

b−d

for some k, which is not stable.

� From Stability Table C.3, we also know that for moral proclivity matrices 0 0

x y

and 0 y

x 0
to be stable, x and/or y have to be either small enough or take a
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specific value. However, it is not possible for kx and ky to continue being small

or continue taking the same value as x and y for all k ≥ 1.

Hence, for fitness games represented in Stability Table C.3, only those moral principles

that generate moral proclivity matrix x y

0 0
are compatible with moral overdrive.

Since for x ≥ 0 and y ≥ 0, Π + x y

0 0
= a+ x b+ y

c d
is strategically equivalent to

AA, any moral principle compatible with moral overdrive is evolutionarily stable for

all x, y ≥ 0.

For fitness games represented in Stability Tables C.4, C.5 and C.6, all stable moral

proclivity matrices require x to take a specific value. Since kx can’t take the same

value as x for any k ̸= 1, there aren’t any moral principles which are compatible with

moral overdrive for those fitness games. □
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