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Abstract

A single worker is assigned a stream of projects over time. We provide a tractable

theoretical model in which the worker allocates her time among different projects.

When the worker works on too many projects at the same time, the output rate de-

creases and the time it takes to complete each project grows. We call this phenomenon

“task juggling,” and we argue that this phenomenon is pervasive in the workplace.

We show that task juggling is a strategic substitute of worker effort. We then present

an augmented model, in which task juggling is the result of lobbying by clients, or

co-workers, each of whom seeks to get the worker to apply effort to his project ahead

of the others’.

1 Introduction

This paper studies the way in which a worker allocates time across different projects, or

equivalently, effort across different projects through time. We study, in particular, the phe-

nomenon of task juggling (frequently called multitasking), whereby a worker switches from

one project to another “too frequently.”

Task juggling is a first-order feature in many workplaces. Using time diaries and observa-

tional techniques, the managerial literature on time-use documents that knowledge workers

(engineers, consultants, etc.) frequently carry out a project in short incremental steps, each

∗Thanks to Gad Allon, Canice Prendergast, Debraj Ray, Lars Stole. The paper refers to an On-
line Appendix, where some formal results are derived, which can be downloaded at the following link:
http://nicolapersico.com/files/appendix nopub continuous.pdf
Email: nicola@nicolapersico.com; andrea.ichino@unibo.it; decio.coviello@hec.ca.
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of which is interleaved with bits of work on other projects. For example, in a seminal study

of software engineers Perlow (1999) reports that

“a large proportion of the time spent uninterrupted on individual activities

was spent in very short blocks of time, sandwiched between interactive activities.

Seventy-five percent of the blocks of time spent uninterrupted on individual ac-

tivities were one hour or less in length, and, of those blocks of time, 60 percent

were a half an hour or less in length.”

Similarly, in their study of information consultants Gonzalez and Mark (2005, p. 151) report

that

“the information workers that we studied engaged in an average of about 12

working spheres per day. [...] The continuous engagement with each working

sphere before switching was very short, as the average working sphere segment

lasted about 10.5 minutes.”

The fact that much work is carried out in short, interrupted segments is, in itself, a de-

scriptively important feature of the workplace. But what causes these interruptions? The

time-use literature points to the “interdependent workplace,” meaning an environment in

which other workers can (and do) ask/demand immediate attention to joint projects which

may distract the worker from her more urgent tasks. One of the workers interviewed by

Gonzalez and Mark (2005, p. 152) puts it this way:

“Sometimes you just get going into something and they [call] you and you have

to drop everything and go and do something else for a while [...] it’s almost like

you are weaving through, it is like, you know, a river, and you are just kind of

like: “Oh these things just keep getting in your way”, and you are just like: “get

out of my way” and then you finally get through some of the other tasks and

then you kind of get back, get back along the stream, your tasks [...].”

The literature on Human Scheduling, instead, attributes task juggling to the cognitive lim-

itations of individual human schedulers. Crawford and Wiers (2001, p. 34), for example,

write:

“One way in which human schedulers try to reduce the complexity of the

scheduling problem is by simplification [...]. However, a simplified scheduling

model leads to the oversimplification of the real system to be scheduled, and this

in turn creates unfeasible or sub-optimal schedules.”
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The physiological constraints on scheduling ability are explored in the medical literature.1

The popular press, however, has already rendered its verdict: scheduling is a challenge for

many workers for reasons both internal and external to the worker. Popular literature books

such as Covey (1989) and Allen (2001) exort (and attempt to help) the reader to prioritize

better. In The Myth of Multitasking: How ”Doing It All” Gets Nothing Done, we find a list

of suggestion designed to help people reduce multitasking on the job. The first two are:

– Resists making active [e.g., self-initiated] switches.

– Minimize all passive [e.g., other-initiated] switches.

(Cited from Crenshaw 2008, p. 89).

1.1 Effects of task juggling on productivity

We are interested in task juggling insofar as it affects productivity. The next example

illustrates a source of productivity loss which is inherent to task juggling.

Example 1 Consider a worker who is assigned two independent projects, A and B, each

requiring 10 days of undivided attention to complete. If she juggles both projects, for example

working on A on odd days and on B on even days, the average duration of the two projects

is equal to 19.5 days. If instead she focuses on each projects in turn, she completes A

on the 10-th day and then takes the next ten days to complete B. In the second case, the

average duration of both projects from the time of assignment is 15 days. Note that under

the second work schedule projects B does not take longer to complete, while A is completed

much faster; in other words, avoiding task juggling results in a Pareto-improvement across

projects durations.

The example shows that a worker who juggles too many projects takes longer to complete

each of them, than if she handled projects sequentially. The latter procedure corresponds to

the “greedy algorithm,” which is widely studied in the operations research literature.2

1.2 Outline of the paper

As a first step toward more complex models, in this paper we focus on a single worker who

faces time allocation issues. In Section 3 we model a production process which may feature

1See, e.g., Morris et al. (1993) and Baker et al. (1996).
2The name “greedy” refers to prioritizing those projects which are closest to completion (which project

A is after day 1).
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task juggling. Formally, the model is summarized in a system of four functional equations

(1) through (4). Finding a solution to this system represents an original mathematical

contribution which is offered in Theorem 1. Based on this solution, we demonstrate that

effort and task juggling are strategic substitutes. This means that anything that makes

workers juggle more tasks will also, indirectly, reduce the worker’s incentives to exert effort.

Section 4 addresses the incentives that might generate task juggling. We model a lobbying

game in which the worker allocates effort under pressure by her co-workers, superiors, or

clients. This model is inspired by the idea of “interdependent workplace” discussed in the

introduction. We fully characterize the equilibrium of the lobbying game and show that, no

matter how low the cost of lobbying, in equilibrium there will be lobbying, which will induce

task juggling. This model provides a microfoundation of task juggling.

2 Related Literature

What we call task juggling is viewed as an aberration in the queuing literature. The queu-

ing literature prescribes algorithms (“greedy”-type algorithms, usually) that prevent task

juggling. As we discussed in the introduction, we believe that this particular aberration is

worth studying because it arises empirically, arguably as a predictable result of incentives.

From a technical viewpoint, our model also departs from the queuing literature because that

literature usually focuses on giving algorithms that keep queing systems stable, that is, suf-

ficient conditions under which queues can’t ever get unacceptably or infinitely long.3 Our

model is by nature unstable because the arrival rate exceeds the worker’s capacity (in our

notation, α > η/X). We believe that there is merit in going beyond stable queuing systems

because stability requires the serving facility to be idle at least a fraction of their time,

which is counterfactual in many environments.4 Finally, our paper is distinct from most of

the queuing literature in that the study of the incentives such as the ones we examine is

largely absent from that literature.

In the economics literature, Radner and Rothschild (1975) discuss task prioritization by a

single worker. They give conditions under which no element of a multidimensional controlled

Brownian motion ever falls below zero. The control represents a worker’s (limited) effort

being allocated among several tasks, and the dimensions of the Brownian motion represent

the satisfaction levels with which each task is performed. Although broadly similar in its

3An exception to the focus on stability is Dai and Weiss (1996), who do study the evolution of an unstable
queing network.

4In Coviello et al. (2012), for example, we study the work organization of judges. Judges are never idle:
in our data, they always have a backlog of cases that they should be working on.
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subject matter, that paper is actually quite different from the present one. Among other

differences, it features no discussion of incentives.

Task juggling is studied in the sociological/management literature on time use (see Perlow

1999 for a good example and a review of the literature). This literature uses time logs and

observations to document the patterns of uninterrupted work time, and the causes of the

interruptions. This literature identifies “interdependent work” as the source of interruptions.

The “lobbying by clients” model presented in Section 4 captures this effect. At a more

popular level, there is large time management culture which focuses on the dynamics of

distraction and on “getting things done” (see e.g. Covey 1989, Allen 2001).5

The managerial “firefighting” literature (see Bohn 2000, Repenning 2001) documents the

phenomenon whereby an organization focuses resources on unanticipated flaws in almost-

completed projects (firefighting), and in so doing starves projects at earlier development

stages of necessary resources, which in turn ensures that these projects will later require

more firefighting, etc. This phenomenon is specular to the one we study because in our

model the inefficiency is caused by too few, not too many, resources devoted to late-stage

projects.

Dewatripont et al. (1999) provide a model in which expanding the number of projects a

worker works on will indirectly reduce the worker’s incentives to exert effort. We get the

same effect in Proposition 1. In their setup, the effect results from the worker’s incentives

to exert effort in order to signal his ability. This effect is different than the one analyzed in

this paper.

3 The Production Process

In this section we introduce a dynamic production process which incorporates the possibility

of multitasking in a very simple way. Imagine a worker who is assigned a stream of projects

over time at rate α. Assuming the worker cannot deal with all the projects instantaneously,

then the worker has to choose how to deal with the excess. We assume that, as cases are

progressively assigned to the worker, she puts them in a queue of inactive cases. The worker

draws from this queue at rate ν. A case drawn from the queue is “put in production:”

in our language, the case becomes active. All active cases receive an equal share of the

worker’s attention, a production process that generalizes the task juggling production process

described in Example 1.

This modeling approach allows us to span the range between much task juggling (ν large,

5For a review of the academic literature on this subject see Bellotti et. al. (2004).
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approaching α) and no task juggling, close to “greedy” (ν low). We will derive an exact

formula for the production function which, given an effort rate, a degree of complexity of

projects, and a level of task juggling, yields an output rate. Having an exact formula for

the production function will allow us later to study strategic behavior pertaining to task

juggling.

3.1 The Model

The model lives in continuous time, starting from t = 0. At time 0 the worker has no active

projects. There is a continuum of projects. Projects are assigned at an exogenous rate α.

Each project takes X steps to complete. A project is characterized, at any point in time, by

its degree of completion x ∈ [0, X], which measures how far away the project is from being

completed. We call a project completed when x = 0. Note that, because x is a continuous

variable, we are assuming that there is a continuum of steps for each project. X can be

interpreted as measuring the complexity of the project, or the worker’s ability.

As soon as the worker starts working on a project, we say that the project becomes active.

All projects remain active until they are completed. At any time t, the worker has At active

projects, in various degrees of completion. The distribution ϕt (x) denotes the mass of active

projects which are exactly x steps away from being done. By definition, the number of active

projects at time t is

At =

∫ X

0

ϕt (x) dx. (1)

We assume that all active projects are moved towards completion at a rate ηt/At, where ηt is

the rate at which effort is exerted. Informally, this means that in the time interval between

t and t+ ∆, the worker shaves off approximately (ηt/At) ∆ steps from each active project.6

This formulation captures the idea that the worker divides a fixed amount of working hours

equally among all projects active at time t. This procedure means that the worker is working

“in parallel” on all active projects. If all active projects proceed at the same speed, then after

∆ has elapsed, the distribution ϕt (x) is translated horizontally to the left (refer to Figure

1), and so for ∆ “small enough” we can write intuitively

ϕt+∆

(
x− ηt

At
∆

)
= ϕt (x) .

To express this condition rigorously, bring ϕt (x) to the right-hand side, divide by ∆ and let

6Note that this formulation requires At > 0.
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∆→ 0 to get
∂ϕt (x)

∂t
− ∂ϕt (x)

∂x

ηt
At

= 0. (2)

This partial differential equation embodies the assumption of perfectly parallel work on the

active projects.

Figure 1: The ϕt function

Note. The function ϕt is translated horizontally to the left as time passes. Newly opened cases are added to the right.

The grey mass of cases to the left of zero are completed.

The projects that fall below 0 (grey mass in Figure 1) are the ones that get completed within

the interval ∆. These are the projects whose x at t is smaller than ηt
At

∆. Therefore, the mass

of output between t and t+ ∆ is approximately∫ ηt
At

∆

0

ϕt (x) dx.

To get the output rate ωt, divide this expression by ∆ and let ∆→ 0 to get

ωt = lim
∆→0

1

∆

∫ ηt
At

∆

0

ϕt (x) dx =
ηt
At
ϕt (0) . (3)
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The worker is not required to open projects as soon as they are assigned. Rather, we allow

the worker to open new projects at a rate νt. A larger νt will mean more task juggling—more

projects being worked on simultaneously. This νt is seen either as a control variable: de-

pending on the specific environment, either a choice on the part of the worker, or determined

by lobbying, or else imposed by some regulation. For ∆ small, the change in the mass of

projects active at t is approximately

At+∆ − At = νt ·∆− ωt ·∆.

Divide both sides by ∆ and let ∆→ 0 to get the formally correct expression

∂At
∂t

= νt − ωt. (4)

Graphically, the mass of newly opened projects is squeezed in at the back of the queue in

Figure 1, just to the left of X, in whatever space is vacated on the horizontal axis by the

progress made in ∆ on the pre-existing open projects.

The description of the production process is now complete. In the production process, two

variables are interpreted (for now) as given: ηt and νt. The first describes how much the

worker works, the second how she works—how many projects she keeps open at the same

time. These two variables will determine, through the process described mathematically by

equations (1) through (4), the output rate ωt which is the key variable of interest. This

variable, in turn, will determine the how long a projects takes to complete. Our first major

task is to uncover the law through which ηt and νt determine ωt. We turn to this next.

3.2 Derivation and Characterization of the Production Function

To build some intuition about how ηt and νt determine ωt, let us start with the “greedy”

input rate. Fix a constant effort level ηt = η. The “greedy” input rate is νt = η/X. At this

input rate, in every short time interval ∆ the worker starts work on ∆ · (η/X) new projects.

At the beginning of time, between t = 0 and ∆, there are no pre-existing projects and so the

only active projects are the newly started ones. Formally, A0 = ∆ · (η/X). According to our

specification of the production process, in this first time interval the worker’s effort shaves

off approximately (η/A0) ∆ = X from each active project. This means that by time t = ∆

all active projects have been completed. Therefore, the throughput rate during this first

interval equals the input rate, and all projects are completed almost instantaneously (to be

exact, within ∆ of being started). Let us now turn to the second time interval (∆, 2∆) . This

second time interval is exactly identical to the first one, and so the same conclusions apply:

the throughput rate is equal to the input rate and projects are completed instantaneously.
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The same logic applies to all successive time periods.

What goes wrong when the input rate exceeds the greedy level? In this case the worker is

not able to complete within the first time period all the projects which were started. These

projects will need additional work during the second time period, which will divert effort

from projects started in the second period. Thus, projects started in the second period

will receive less attention during period 2, than first-period projects received in period 1.

Therefore period 2-projects will be even less complete when they reach period 3. This

effect snowballs down to all future projects. Soon, a period is reached where the worker is

simultaneously working on many vintages of projects, some of which will only be completed

far in the future. This means that a fraction of the current period’s worker effort will not pay

off today, but only in the future. This observation suggests that today’s throughput should

be smaller, relative to the greedy case. However this is not obvious, because it is also true

that some of yesterday’s effort pays off today. Nevertheless, in this section we prove that

when the input rate exceeds the greedy level, throughput is smaller than its greedy level.

Definition 1 Fix X. We say that input and effort rates νt, ηt generate output rate ωt if

the quintuple of positive real functions [νt, ηt, ϕt (x) , At, ωt]t∈(0,∞)
x∈[0,X]

satisfies (1), (2), (3), (4),

and A0 = 0.

The next theorem identifies the law through which νt and ηt generates ωt. Implicitly, then

the theorem identifies the production function. The theorem restricts attention to the case

in which νt and ηt are constant and equal to ν and η respectively.

Theorem 1 (production function) The pair of constant functions [νt = ν, ηt = η] gen-

erate ωt ≡ ω if the triple ν, η, ω solves

ω
X

η
− log (ω) = ν

X

η
− log (ν) . (5)

Proof. We start by guessing a functional form for ϕt (x) and At. Fix η and pick any two

real numbers ν and ω > ν. Let

ϕ∗t (x) =
(ν − ω)

η
ω t e

ν−ω
η
x,

and

A∗t = (ν − ω) t.
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One can verify directly that for any K,λ, the pair ϕt (x) = Kte
λ
η
x, At = λt solves (2) above.

Moreover, for any λ the triple ϕt (x) = Kte
λ
η
x, At = λt, ωt satisfies (3) if and only ifK = λ

η
ωt,

which implies ωt = ω. Finally, the triple νt, At, ω satisfies (4) if and only if λ = νt−ω, which

implies νt = ν. This shows that, for any ν, ω, the quadruple [ν, ϕ∗t (x) , A∗t , ω] satisfies all the

required equalities except (1). We now show that the pair ϕ∗t (x) = Kte
λ
η
x, A∗t = λt solves

(1) if and only if equation (5) holds. This equation implicitly identifies which values of ν, η

and ω are compatible with each other.

Condition (1) reads

A∗t =

∫ X

0

ϕ∗t (x) dx.

Substituting for ϕ∗t (x) and A∗t yields

λt =

∫ X

0

Kte
λ
η
x dx

=
η

λ
Kt

[
e
λ
η
X − 1

]
.

Now substitute for K = λ
η
ω and λ = ν − ω and rearrange to get

ν

ω
= e

(ν−ω)
η

X .

Taking logs yields equation (5).

Finally, the last condition in Definition 1 is satisfied because A∗0 = 0. Therefore, Theorem 1

is proved.

Equation (5) implicitly yields the production function we are seeking. The equation is

most easily interpreted as follows: given an effort rate η and degree of task juggling ν,

the implicitly identified ω represents the generated output rate. A convenient result also

proved by Theorem 1 is that given constant effort and input rates, a constant output rate is

generated. This is actually a subtle result, as we discuss on page 1 in the appendix).

We will now study the properties of the implicit production function. Before we start,

however, an observation. The functions ϕ∗t (x) , A∗t identified in Theorem 1 are only well

defined if the input rate ν exceeds the output rate ω. Expressed in terms of primitives, this

condition is equivalent to ν > η/X. (This equivalence is proved in Appendix 1.1.) The

limiting case η/X represents the “greedy” input rate, the smallest input rate at which the

worker is never idle.7 So our analysis is restricted to input rates such that the worker is

never idle. From now on, we implicitly maintain this “non-idleness” assumption.

7The case ν ≤ η/X is treated in Proposition 2 in Appendix 1.1.
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Proposition 1 (comparative statics on the production function) For each pair

(ν, η/X) denote by Ω (ν; η/X) the unique ω < ν that is generated by ν, η through (5). Then

we have:

a) Ω (ν; η/X) is decreasing in ν.

b) Ω (ν; η/X) is increasing in η/X.

c) ∂Ω(ν;η/X)
∂ν∂η

< 0, which means that ν and η are strategic substitutes in the production of ω.

d) The function Ω (·; ·) is homogeneous of degree 1.

e) Ω (η/X; η/X) = η/X.

Proof. See the Appendix. Part e) is proved in Proposition 2 in Appendix 1.1.

Part a) captures the effect of task juggling: increasing the input rate ν reduces output.

Therefore setting ν as small as possible, provided that the worker is not idle, produces the

maximum feasible output rate. Maximal output is therefore achieved when ν = η/X. In that

case, part e) shows that the output rate equals η/X. This policy corresponds to the “greedy

algorithm,” and gives rise to a steady state which is analyzed in Proposition 2 in Appendix

1.1.

Part b) simply says that if a worker works more then the output rate is larger.

Part c) deals with the complementarity of inputs in the production of the output rate. It

says that the returns to effort decrease when ν increases. Intuitively, this is because At is

larger and so an increase in effort needs to be spread over a greater number of projects.

Part d) is a constant-returns-to-scale result: if we scale both inputs by the same parameter r,

output increases by the same amount. The parameter r can be interpreted as governing the

pace at which the system operates. Setting r > 1 means that the entire system is working

at a faster pace: per unit of time, we have more input, more effort, and more output, all in

the same proportion.

Part c) has implications for the scenario in which effort is chosen endogenously, rather than

being exogenously given. Suppose effort η∗ (ν̂) is determined as the solution to the problem

max
η

Ω
(
ν̂;
η

X

)
− c (η) , (6)

where the input rate ν̂ is exogenously given and the function c (·) represents the cost of

effort. Problem (6) represents the problem of a worker choosing how much to work, given

the constraint that she needs to put projects into production at rate ν̂. Such constraints
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might be determined by the hierarchical organization of the worplace (how many co-workers

can, or choose to, pressure the worker for their work to be done, as in the “interdependent

workplace” modeled in the next section), or they can be mandated by regulation (italian

judges are required to start work on a case within 60 days of the case being assigned to them).

Suppose that c′ (0) = 0, which guarantees that the optimally chosen effort is positive. Then

the following implication holds true.

Corollary 1 Suppose effort η∗ (ν̂) solves (6). If the input rate grows to ν̂ ′ ≥ ν̂ then optimal

effort η∗ (ν̂ ′) decreases relative to η∗ (ν̂) .

Proof. A direct consequence of Proposition 1 c).

This proposition highlights another dimension of inefficiency associated with task judggling.

Not only does task juggling slow down projects, but it also induces output-motivated workers

to slack off.

We now define two measures of durations: they are the measures employers or policy-makers

often care about.

Definition 2 For a project assigned at t we define the duration Dt as the time which

elapses between t and the completion of the project. For a project opened at t (and thus

assigned at a time before t), we define completion time Ct as the time which elapses

between t and the completion of the project.

The next result translates results about output rates into results about durations. The main

take-away is that because durations are decreasing in the output rate, task juggling increases

durations.

Proposition 2 (a) Fix ω, ν, η. Then Ct = (ν−ω)
ω

t and Dt = (α−ω)
ω

t.

(b) Fix η, and let ω be generated by [ν, η]. Then Ct and Dt are increasing in ν.

Proof. See Appendix 1.1.

4 Strategic Determination of Degree of Task Juggling,

and Endogenous Effort

In the previous sections we have assumed that νt, the exogenous input rate, is constant

through time and, furthermore, that it exceeds the duration-minimizing “greedy” rate η/X.

12



We have not discussed how such a νt might come about. In this section we “micro-found”

such a νt by introducing a game in which the input rate is determined endogenously as an

equilibrium phenomenon. In the equilibrium of this game νt will in fact turn out to be

constant through time, and to exceed η/X. Therefore, this section microfounds the time-use

behavior which was taken to be exogenous in the previous section.

The setup is that each project is “owned” by a different co-worker, supervisor, or client who

in each instant can lobby the worker to devote a fraction of effort to his project, regardless

of its order of assignment. For the client, the private benefit of lobbying is to avoid his own

project waiting inactive. But such lobbying has a negative externality on all other projects,

because it increases the number of active projects which, as shown in the previous section

slows down all projects. This externality, which is not internalized by the lobbyists, gives

rise to an excessively high input rate.

The model is as follows. The worker’s effort η is constant through time and fixed exogenously

(we will relax the second assumption later). Lobbying is modeled as a technology whereby,

at any instant t, a client can pay κ ·∆ and force activity on his project during the interval

(t, t+ ∆) . Activity on the project means that the project moves forward by (η/At) ·∆. The

rate κ is interpreted as the per-unit of time cost of lobbying. If κ is not paid then the project

sits idle at some x until either lobbying is restarted or the never-lobbied projects of its

vintage (those assigned at the same time) catch up to x, at which time the project becomes

active again and stays active without any need of, or benefit from, further lobbying. In

every instant, ν “never lobbied” projects are opened, in the order they were assigned. Once

a never-lobbied project is opened, it forever remains active whether or not it is lobbied.

The rate ν represents the input rate that would prevail in the absence of any lobbying by

the clients.8 In this section At denotes the mass of all projects active in instant t and it is

composed of the two type of projects: all those that are lobbied in that instant, and some

that are not.9

We assume that clients minimize B times the duration of their project, from assignment to

completion, plus κ times the time spent lobbying. B represents the rate of loss experienced

8One could be concerned that in equilibrium there might not be enough never-lobbied projects to open,
and that therefore it would be more precise to state that in every instant the worker opens the minimum of
ν never-lobbied cases and the balance of the never lobbied projects. However, we will see that in equilibrium
the balance of never-lobbied projects never falls below ν.

9Under these rules, for a case that has been lobbied in the past, two scenarios are possible in instant t.
First, the case may have been “caught up” by the never-lobbied cases of its own assignement vintage; in
other words, the case was lobbied in the past, but then the lobbying lapsed and the case is now at the same
stage of advancement (same x) as its never-lobbied assignment vintage. Such a case is worked on without
the need for further lobbying and proceeds at speed η/At. The second scenario is that the case has not been
caught up at time t. In this scenario the case is worked on in the interval ∆ and makes η∆/At progress if
κ∆ is spent; otherwise, the case does not proceed.
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by a client whose project is not completed. We assume no discounting for simplicity.

In this model, clients are not allowed to use a variable amont of resources to lobby; rather,

the cost of lobbying per unit of time is assumed to be fixed exogenously. We interpret this

fixed cost as a sort of cost of supervision, the cost of stopping by and asking “how are we

doing on my project?” or of exerting other kinds of pressures. We believe this formulation

best captures the process that goes on within organizations, where monetary transfers of

this kind are not allowed. Also, this type of lobbying process might take place after several

principals have signed separate contracts with an agent, for example after several homeowners

have contracted for the services of a single building contractor and now each is pushing and

cajoling the contractor to finish his home first.

Since our goal is to explain why lobbying makes the input rate ν inefficiently large, let’s tie

our hands by stipulating that the input rate of never-lobbied projects ν is “low,” that is,

it belongs to the interval
[
0, η

X

]
. This choice of baseline ensures that any slowdown in the

output rate cannot be attributed to an excessively large ν.

Projects are indexed by the time τ they are assigned and by an index a that runs across the

set of the α projects assigned at time τ. We now introduce the notion of lobbying strategy

and lobbying equilibrium.

Definition 3 A lobbying strategy for project (a, τ) is a measurable indicator function

Saτ (t) defined on the interval [τ,∞) which takes value 1 if project a is lobbied in instant t,

and is zero otherwise. A lobbying equilibrium is a set of strategies such that, for each

project (a, τ) , the strategy Saτ (t) minimizes κ times the time spent lobbying plus B times

the project’s duration.

Equilibrium strategies could potentially be quite unwieldy, featuring complex patterns of

activity interspersed with periods of no lobbying. Lemma 3 in Appendix 1.2 characterizes

equilibrium strategies, achieving considerable simplification. Based on that result, we con-

jecture (and show existence below) of simple equilibria in which a time-invariant fraction z

of the α newly assigned projects is never lobbied, and the remaining fraction (1− z)α is

lobbied immediately upon assignment and then continuously until they are done. We will

call these equilibria constant-growth lobbying equilibria. Note that the definition of

constant-growth lobbying equilibrium does not restrict the strategy space.

If players follow the strategies of a constant-growth lobbying equilibrium, the input rate ν (z)

is determined by z via the identity

ν (z) = ν + (1− z)α.
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The percentage of lobbyists (1− z∗) , and hence the input rate ν (z∗) , are determined in

equilibrium.

The equilibrium construction is delicate. In every instant each client has a choice to lobby

or not, and so in equilibrium each client has to opt to follow the equilibrium prescription.

Moreover, every newly assigned client must be indifferent between lobbying and not. The

cost of lobbying is proportional to the time the project is expected to require lobbying,

which is the time that active projects take to get done. The drawback of not lobbying is the

additional delay incurred from not “skipping the line.”

Proposition 3 Suppose α > η
X
. Then, for any ν and any cost of lobbying κ,

a) a constant-growth lobbying equilibrium exists;

b) in any constant-growth lobbying equilibrium ν (z∗) > η
X
, i.e., the equilibrium input rate

exceeds the duration-minimizing one;

c) the constant-growth lobbying equilibrium is unique;

d) the fraction (1− z∗) of projects that are lobbied in equilibrium is increasing in α
ν

and η
X
,

and decreasing in κ
B

;

e) the equilibrium input rate ν (z∗) is decreasing in κ
B

and increasing in α
ν

and η
X
.

Proof. See the Appendix.

Part a) can be viewed as providing a microfoundation for the behavioral assumption of

constant νt which was maintained through Section 3. What was previously a behavioral

assumption about the worker is now the outcome of lobbying equilibrium where, in principle,

νt need not be constant.

Part b) of the proposition says that, no matter how large the cost of lobbying, input rates

will always exceed the “greedy” rate, and so we will have task juggling in equilibrium. The

intuition is clear: if input rates were efficient, say ν ≤ η/X, then completion time would be

zero.10 This means that the cost of lobbying would be zero and, also, that a project which

is lobbied would be completed instantaneously. Therefore lobbying is a dominant strategy,

which would give rise to an input rate ν = α > η/X. Thus an equilibrium input rate ν

cannot be smaller than η/X.

Part e) of the proposition says that if a worker is less susceptible to lobbying, which we

can model as κ being larger, then the worker will have a smaller input rate and a larger

10That completion time is zero under the greedy rate was intuitively discussed on page 8. Formally, the
result follows from A0 = 0 and Proposition 2 in Appendix 1.1.
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output rate. Moreover, there is more lobbying when the assignment rate is larger, which is

intuitive because then a non-lobbying client anticipates waiting longer for his project to be

opened. Finally, harder-working workers and easier projects will give rise to more lobbying.

Intuitively, this is because then the completion time gets shorter relative to the duration of

a non-lobbied project.

A few words of comment. Social inefficiency in this model results not only from the wasted

cost of lobbying, but also from the decrease in the output rate. Thus, the inefficiency goes

beyond that in a “common pool” model where a number of agent expend resources lobbying

for a share of a fixed pie.

5 Conclusion

Task juggling is prevalent in the workplace. We have developed a theory of a worker who

chooses how many projects to work on simultaneously. Working on too many projects at

the same time reduces the worker’s output, for given effort and ability. We have derived

the production function that describes the slowdown in output. We have shown that task

juggling and effort are strategic substitutes in the production function, suggesting that when

effort is not contractible, whatever worsens task juggling will also indirectly decrease effort.

We have also modeled an “interdependent workplace” environment which will lead the worker

to work on too many projects.

Our analysis does not touch on the possible counter-measures that might reduce task jug-

gling. A principal, for example, might want to control an agent’s task juggling through

productivity-based incentives. If so, then could task juggling always be eliminated? We

think not. When evaluating productivity is difficult, such as when knowledge workers have

a monopoly over expertise as do physicians, scientific researchers, etc., strong productivity-

based incentives may be counterproductive (Holmstrom-Milgrom multitasking). In these

cases weak incentives can be optimal and agents can easily fall prey to task juggling.

We view the single-worker model presented here as a building block for future research

of two types. First, empirical work, which might take advantage of increasingly available

workplace micro-data to quantitatively evaluate the inefficiencies caused by task juggling,

and to perform counterfactual calculations. In our companion paper (Coviello et al. 2012)

we use a related framework to estimate the causal effect of an exogenously-induced increase

in parallel working. We find that the slowdown in output resulting from task juggling is

large.

Second, we foresee the possibility of theoretical work extending this analysis to a multi-worker

hierarchical worplace.
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