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Foreword

This volume constitutes the Proceedings of the "Nonlinear Dynamics in
Economics and Social Sciences” Meeting held at the Certosa di Pontignano, Siena,
on May 27-30, 1991.

The Meeting was organized by the National Group "Modelli Nonlineari in
Economia e Dinamiche Complesse” of the Itallan Ministery of University and
Scientific Research, M.U.R.S.T.

The aim of the Conference, which followed a previous analogous initiative
taking place in the very same Certosa. on January 1988%, was the one of offering a
come together opportunity to economists interested In a new mathematical
approach to the modelling of economical processes, through the use of more
advanced analytical techniques, and mathematicians acting in the field of global
dynamical systems theory and applications.

A basic underlying idea drove the organizers: the necessity of focusing on the .
use that recent methods and results, as these commonly referred to the
overpopularized label of "Chaotic Dynamics”, did find in the social sciences domain:
and thus to check their actual relevance in the research program of modelling
economic phenomena., in order to-individuate and stress promising perspectives,
as well as to curb excessive hopes and criticize not infrequent cases where
research reduces to mechanical, ad hoc, applications of "a la mode" techniques.

In a word we felt the need of looking about the state of the arts in non-linear
systems theory applications to economics and social processes: hence the title of
the workshop and the volume.

The Meeting lasted four days. Mommings were devoted entirely to four
minicourses given by R. Abraham, Economics and the Environment: Global
Erodynamic Models; R.H. Day, Chaotic Dynamics in Micro and Macro Economic
Processes; H.-W. Lorenz, Complextity in Deterministic, Nonlinear Business-Cycle
Models; C. Mira, Toward a Knowledge of the Two-Dimensional Diffeormophism.

" Afternoons were taken by invited lectures and contributed papers.

About one hundred participants came from Europe and the Americas and
more than 30 articles were presented.

Materials in the present volume are organized following the meeting structure.

The first section contains the notes of the minicourses givenn by R. Abraham,
H.-W. Lorenz, within the text of one of the lectures given by C. Mira.

Lessons by R.H. Day related essentially to his joint paper with G.Pianigiani
"Statistical Dynamics and Economics”, (J. of Economic Behaviour and Organization,
volume 16, July 1991, pp.37-84), to which we refer the interested reader.

In the second part the texts of three invited lectures, by W. Béhm, R. Goodwin
and A.G. Malliaris, are published. Even if these articles were prepared on the
occasion of the meeting, only the first has been formally presented there.

Finally, the third section is devoted to thirteen contributed papers presented
ianontégnano, which the authors submitted for publication and were positively
refereed.

It is our feeling that the meeting was really successfull in attaining its
intended goals and we would like to express our gratitude to the invited speakers
for the quality of the lectures they delivered in Pontignano, and to all the
participants for their highly interesting contributions, the lively discussions and
the stimulating and friendly atmosphere they were able to create.

We would also like to express our thanks to the many referees for their
important help in selecting the papers to be included in this volume.

The University of Florence and the University of ‘Siena jointly sponsored the
meeting and we gratefully acknowledge their scientific and financial support, as
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well as the contributions which the Organizing Committee received from the
Monte dei Paschi di Siena Bank.
A final particular thank goes to Mrss. Marcella Dragoni and Bianca Maria

Fabrini, whose secretary work during the Meeting and the editing process has
been invaluable.

Franco Gorl
Lucio Geronazzo
Marcello Galeott!

* M. Galeotti, L. Geronazzo, F. Gori, Non Linear Dynamics in Economics and
Social Sciences, Pitagora Editrice, Bologna, 1990.
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Acyclicity of Op’timai Paths

Luigi Montrucchio * Nicola Persico

University of Turin

Abstract
It is well known that the stability of optimal paths for infinite horizon concave prob-
lems is not assured for all discount factors. Along the ideas developed in Boldrin and
Montrucchio (IER. 1988), we provide new results of stability which are refated Lo the
notion of acyclicity. Some order relations are introduced which can be seen as general-
izations of Liapunov theory. Qur results are quite’ compleic lor one~dimensional case. In
higher dimeunsions we state some new results.

1 Introduction

This paper is concerned with the dynamics of optimal policy functions. The matler is interesiing
since the contributions of some authors (sce for example Boldrin-Montrucchio {2, where it is
shown that any kind of crratic behaviour is possible, provided the disconnt {actor is low cnough}).
Classical turnpike theorems, on the other hand, show that regular behaviour is forced when Lhe
discount factor gets close o onc. In the middle there should be some kind of bifurcalion, but
little is known in gencral.

The purpose of this paper is to give results about the regular behaviour of the policy func-
Lion, based on properties of the primitives of the problem, and independently of the nagnitude
of the discount factor.

The results obtained are based on the notion of acyclicity of a binary relation, and lic in the
line of rescarch started by Montrucchio [7] and developed in Boldrin aud Montrucchio [3]. One
of the advantages of this approach is that Lhe analysis is carried out without assumptions of
dilferentiability, although further characterizations cau be provided in case Lhe priuitives arc
differentiable.

The results we obtain are quite complete for the one-dimensional case and, when comparcd
with the altcrnative unimodularity approach, prove more general.

In Section 2 we reeall some bricl definitions concerning dynamical systems. Scction 3 is
devoled Lo the exposition of a general theorem and of additional results for onc-dimensional
systems. Section 4 contains the applicalion of the Lheorems above to the standard problem
of dynamic programming over infinite horizon. The results about the dynamics of the policy
function arc derived, and the onc-dimensional casc is examined in detail. Furtliermore, we
show the connections between acyclicity and unimodularity. In the last subscction we show
how, using our method, it is possible to allow only low-period cycles in one dimension, ruling
oul more complicaled dvnamics.

* ‘The first author was partiaily supporied by a grant from M.U.RS.T., National Group on Nonlincar
Dynamics in Econanics and Social Sciences
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2 Definitions and notation

In this section we will develope some notation, and revise some knowledge that we will n.
later on.

Suppose X is a complete metric space. A discrete dynamical system is a continuous mappi:
f X — X . Itis well known that the solution to the initial value problem z, = f (:c¢ 1), To:
z° is given by z, = f*(z°) where f' denotes the t-th iterate of f.

Denote with

Fix(f) = {z € X; [(z) = z}

and

Per(f) = {z € X; f"(z) = z for some n € N}.

Let us recall some classical definitions related to the asymptotic behaviour of the trajectorics
f~(2)-
For any € X define the w-limit sel w(z) as the set of all limit points of the sequence f™(z).
An alternative definition (see [6]) is:
= N U /*a).
Kon -

n20

The basic properties of limit sets arc summarized in

Fact 1 Every limit set w(z) is closed and positively invariant. If in addilion e sequence [™(x)
is relatively compact, then w(z) is nonemply, compact, invariant and invarianily connected.

We refer to [5, 6] for details. Ilere, we just recall that a set I/ C X is said to be posilively
invariant if f(H) € I, and invariant il f{H) = II.

Furthermore, # is said to be invariantly connecled if it is not the union of two noncmply,
disjoint closed invariant sets. 1t should be noted thal the motion f™(z) is relatively compact
when X is compact. Analogoulsy it is possible to introduce the a-limit set. Given z € X, the
sel a(x) is defined as the collection of points y € X such that there exist iwo sequences z, :md

» 2> 0 satyslying

Zo =%, Tpn—Yy asn-—+oo and [*(z,4) = Zp.
In the sequel we shall denote
w(f) = Uzexw(z) and of[f) = Uzexa(z).
Let us introduce the second concept which is related to the recurrence property.

Definizion 1 A point p € X is a wandering point for f if there exists a neighbourhood V of
p and -sitive inleger ty such thal [{(V)NV =8, for all L > ty. Olherwise we say thal p is

a non dering point. The colleclion of all such p’s is the non—-wandering set §(f).

Since - e X is metric, we can give a simpler dcfinition for Q(f). A point z is in Q(f) i
iE th two sequences 7, — & and yr — T as k — +00, and a sequence of inlegers :
ng ~ 4 that f™(z¢) = y». :

-

< € X it is possible to write the following relation: '

Fix(f) € Per(f) Cw(/)V (/) € /).

’,}1,-'&- R
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A classical discussion of the set ) for discrele and continuous dynamical systems is in [9].
Informally, we can say that Q contains cquilibria, e-limits and periodic orbits, and also all other
points of X which keep coming back near themselves under iteration of f:  is the dynamically
interesting part of X. If we were able to show that Q(f) = Fix([f), then we would say that
the map f is “simple”, in the sensc that no periodic points, “chaos” or topologic transilivily

-is allowed. If Q(f) = Fix(f) and Fix(/) is finite then w(z) = {p} for some p € Fix(f). This

follows from Fact 1 in addition with the remark that a finite invariantly connccled set is a
periodic orbit.

Now, let us turn to some algebraic notion we use in the sequel. We definc a binary relation
over X, called P; that is, P is a subsct of X x X. We will write yPz for (z,y) € P. Moreover,
thinking of P as a correspondence, we will denote with P{z) the set P(z) = {y € X : yPz},
and we will feel free to use the terminology of correspondences. For example, we will say that
P is lower-hemicontinuous if the correspondence defined by P is lower-hemicontinuous.

Now, let us turn to the notion of acyclicity.

Definition 2 A binary relation P over X is called cyclic if for some n > 2 liere exisits a

sequence (T, ...2,) of dislinct points in X such thal x.Pzy, 23Pz3,..., 2aPTacy, 11 Pz,. P
1s said lo be acyclic if it is not cyclic. |

REMARK: If we define the transitive completion as the set P = {(z,y) € X x X such that
there exists a finile sequence (z,...z,) of points in X satislving z, Pz, £2Pxy,..., 2, Pza_y,
y Pz, }, then Definition 2 simply states that P is acyclic if and ouly if P* is irveflexive. Lo

3 Binary relations

3.1 The general case

We give immediately the main theorem of this paper.

Theorem 3.1 Let f: X — X be a continuous map and P a binary relation over X. Assume
that | and P satisfy the following condilions

1. f(z)Pz for all z € X such that [(z) #z
2. P is open and acyclic.
Then we have:
a(f) = FieJ).
Proof:  See [3] and [7): o

Theorem 3.1 might well be interpreted as a fixed-poinl theorem whenever X is compact. In
fact, by Lemma 1 we are sure w(f) is nonciupty, and since the theoren cstablishes the equality
A [) = Fix(f), we know that in this casc the set of fixed poiuts is nonempty, without requiring
vy convexity of the space X
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3.2 The one—dimensional case

In this subsection we are concerned with the case when X is an interval of the real line. The
one-dimensional case yelds particularly good results with our approach, due to the completeness
of the natural order structure on R, and to the use of Sarkovsky's powerful theorem (see [8])
on the ranking of cycles.

Let us assume the following regularity conditions for the relation P.

i) P is lower-hemicontinuous.
ii) The set P(z) is convex for every z € X.

iii) If, for a particular point 2’ € X, P(z') = §, then for any sequence z, — z’ such that
P(z,) # 0 there exists a sequence y, — 7' with y, € P(z,).

Definition 3 A binary relation P on X is said to be n—cyclic if there exisls a sct of distinct
points x;...z, € X such that 23P 2,23 P29, .. TaPTnt, T1P2a. The relation will be called
n-acyclic if it is nol n-cyclic.,

Lemma 1 Assume a binary relaiion P salisfics the regularily condilions i),ii),ii). Then for
every sequence of distinet points {z1...za} € X, such that ziy1 Pzi (n+1=1) there exisls a
continuous map g : X — X wilh the following properiics:

L p(zs) = Ty
2. u(z)Pzx for every z # p(z)
Proof  See [3}. : ‘ o

Theorem 3.2 Suppose P is m-acyclic, and P satisfies Assumplions i)-iii) above. Then P is
n-acyclic for n > m in the Sarkouvsky ordering of the nalural numbers.

Proof  Assume P is m-acyclic, and supposc there exists a evele ¥y, .. -y with Y Pyi(n+1 =
1} and with n > m.

If P satisfics i)-iii) then, by Lemma 1, a continuous map g : X — X cxists such that
(i) = Yisa and p(z)Pz. But then we can apply Sarkovsky's theorem. In fact, the cxislence
of a period-n cycle forces Lhe existence of a period-m cycle, denoted by {x;...z,}. But this,
by Lemma 1, implies 2, Py, 23P%3,. . . 2 PZm.t and 21Pzy, contradicling the assumption. O

The consequence of Theorem 3.2 is that it is sufficient to exclude 2-acychicity in order to
rule oul acyclicity.

4 Optimal paths

4.1 The problem

The optimization problem is the usual one, described by (1) and by assumptions A1—A3J below
(5cc for example {10]).

Wi(z) = max Y V(zg, 2141)8"

=0
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s. L. (J:g,xl.{.]) € D (1)

ro given in X

Al X ¢ R"is compact and convex.

A2 D is a convex subset of X x X, and the correspoudence D : X — X defined by D(z) =
{y € X : (z,y) € D} is a continuous and compact-valued correspondence, such that
z € D(z) for all z € X.

A3 V: X x X — R is a continuous and concave function, and V(z,") is strictly concave for
every z € X.

We recall here some well-known properties of (1) that we will use in the sequel.
The function Ws : X — R is the value function associated to {1). It is concave and
continuous, and satisfies the Bellman cquation

Wilz) = ma (V(2,) +Ws(o)). (2)

Define 75 : X — X the continuous mapping solving (2), e
Walz) = V(z,ms(z)) + EWs(7s(x))- (3)

We call 5 the policy function of (1), and we will often omit in what follows the subscript 4. It
can be shown, using Bellman's optimality principle, that (£}, is a feasible sequence realizing
the maximum of (1) if and only if it satisfies 2,4y = rs(x,). The hypotheses made above have
the goal of assuring the existence of a well-hehaved policy function (for details see {ioh.

It is well known (see [2]) that very complicated dynamic behaviour is possible for the function
r. Then it is interesting Lo obtain stability conditions for 7 that do not depend on the explicit
knowledge of .

4.2 Bellman’s equation: the n-dimensional case

We will now provide the application of the general theorems provided in Section 3. Informally,
we start from the fact that the function 7(z) is scen to be the maximizer of the right-hand side
of (2), and is thercfore “preferred” to any other point in X, including the linear combination
of itself with the point x.

Definition 4 Let I/ : X x X — R be continuous, with U, X and D salisfying Al-Ad. fore
given number 0 € [0,1) define the binary relation Py over X as

yPex & Uz, (1 = 0)z + 0y) < U(z,y)
for (z,y} € X x X.

The relation P; is open in X x X because U is continuous.
We are interested in the case in which the function U(z,y) is defined as

Uz,y)=V{(z,y)} + SWsl(y),

f
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where V and W are as in problem (1). In other words, one wants to study the acyclicity of
the relation

yPox & V(z,(1 = 0)z + Oy) + §W((1 — O)z + Oy) < V(z,y) + §Ws(y) @)

for 0 € [0,1), and {z,y) € X x X.
Since (z) = argnax,ep(=)U(z, y) for some suitable U, it is true that r(x)sz when 7(z) # z,
because of the strict concavity of U(z, ), and because (z,z) € D. We are then in the conditions
to apply Theorem 3.1, except for the acyclicity of the relation Pj.
Before turning to the acyclicity of Pj, let us establish some properties of this relation
following [4], where it was first introduced.

Proposition 1 0 > ¢ implies Py C Py, where Py is now considercd as a subset of X x X.

Proof  Let (z,y) € Py. Then U(z,(1 — 0)z + 0y) < U(z,y). For fixed z and y, consider the
function ¢ : [0,1) — R defined as ¢(0) = U(z,(1 — )z + Oy). Then (z,y) € Py is equivalent
to ¢(0) < #(1). The concavity of U(z,-) guarantees that ¢ is concave, and therefore § > ¢
implies ¢(¢") € ¢(0) < 1,i. e., U{z,(1 = 0)z + 0'y) < U(z,y), and thus (z,) € P. ]

Corollary 4.1 If Py, defined as in Definition 4, is acg)clic for 0 = 0, then it is also acyclic for
all1>0>0.

In the following we will convene to call 0-acyclic any U that induces a relation Py which is
acyclic,
Looking at Definition 4 it is immediate to verify that

Proposition 2 If V is 0-acyclic for some 0 € {0,1) then the ncw functwn Ulz,y)=Viz,y)+
¥(z) is also O-acyclic for any function ¢ : X — R,

Definition 5 Let V(z,y) be as in A3. We say that it is additively 0-acyclic iff the funclions
U(z,y) = V(z,y) + W(y) arc O-acyclic for any concave W(-).

We know that the policy function satisfies (4) for any admissible §, whenever () # z, beeause
of assumptions A2 on D). Then Theorem 3.1 applies. Obviously, il V' is additively 0-acyclic for
some 0 € [0,1), then the policy function  is “simple” for cvery & € [0,1). Lel us now turn to
a sullicient condition that guarantces the additively 0-acyclicity of V.

Theorem 4.2 Let V{z,y) be as in A3, and 75 be as dcfined in (8). If there exists a 0 such thal
Jor any N and Jor any scquence of distincl poinis {x,...znN} one has

Z V(zy, (1 = Oz + 0241) 2 }: V(zy, zept) 5)
tzx '

with 2y = zy, then V is additively 0-acyclic and 75 is “simple”.

Proof:  We will proceed by contradiction. Let (5) be satisfied {or some 0 £ 0 < 1 and assumce
that P as defined in (4) is not acyclic for some concave W. This means that there exists a
scquence of poinls {z;...zn) such that zgys Pozy with £ = 1... N and zyyy = z;. In other
words, for the given § and chosen W one has

V(x(, (1 '.E'w‘; + ‘C":l'}'l) + "V((I — 0):5‘ + 01(+]) < ‘,(17‘,$‘+|) + "V(:CH.]) fOI‘ t=1... N.
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Surnming over #:
N . . N
Z[V(x,, (1 - 0).’&'( + 0Ig+1) + W((l — 0)$¢ + 02¢+l)l < Z[V(x,, xt‘l—l) + W(IH.])J. (G)
=1 =)

As W was assumed concave, we have
N N N N
Z W((1 -0z, + 0zi41) 2 (1 = 0) z W(z)+0 ZW(1-'=+1) = Z W(z,).
=1 t=1{ t=1 t=1

The latter inequality implies that Equation (6) may be rewritien as:

N N
I Viz(1 - Oz +0z04) < Y Vizy, z041)
te=} =1

which contradicts the hypothesis (5). . o

REMARK:  Theorem 2 of [3] is obtaix;cd as a special case of Theorem 4.2 by taking 0 = 0. ©

Obviously, we have the following propositions.

Proposition 3 If @ function V salisfics condition (5) Jor 0 =0, then V salisfies condilion (5)
Jor all 0> 0. :

Proof:  The same argument used in the proof of Proposition 1 may be applied to the funciion
$ :[0,1) = R defined by $(0) = Z‘IL,{V(J:“(I = O)z, + 0z44,)] for cvery given sequence
{z1...25}. w]

Proposition 4 If a function V salisfies (5) for some 0 € [0,1) then for any Junclion  : X —
R and any concave function ¢: X — R, the new function V*(z,y) = Viz,y) + ¢(z) + é(y)
also satisfies condition (5).

Proof:  One needs only to replicate the argument in the proof of Theorem 4.2, Q

Proposition 4 may be quile misleading: in fact, the addition of a {unction ¢(y) may render
additively 0-acyclic a funciion that is not 0-acyclic. To show Lhis, we have to remind the notion
of a-concavily.

A function V(z,-) is said to be a-concave if

b
3
1
b
j

V(1= 0y +0:) 2 (1 = )V (5,) + 0V/(z,2) + Lad(1 = o)y - =,
for all Gin[0, 1], 4, =.
Proposition 5§ Take a V(z,y) such that V(z,-) is a-concave for some o > 0. Supposc
- N N 1 N '
I V(zgz) > 2 Vi(z, ) - 5% 2ollze =zl (7)
t=] {=i i=]

for some 0 < o < @, for every N and for every sequence of dislinct points {x; czy} in X
covith Ty =2, Then Viz,y) turns oul to be additively 0-acyclic for 0 = afa.
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Proof By contradiction as usual, let {z;...zn} be a sequence of distinct points in X with
Zn41 = 1y which realizes a cycle for 0 = o;/a. Then we have

V{zo (1= 0)z + 0zu41) + W((1 = 0)z, + Oze41) <

V(I(, zg+l) + W(I¢+1) for j=1.,.N. (8)

1f V(z,) is a-concave,

V(ze, (1 = 8)zy + 02040) 2 (1 = OV (20, 20) + 0V (20, 2041) + ';‘010(1 — )|z = 210l
and comparing with (8)

(1 = 0V (2, 2¢) + OV (2¢, Zegn) + -;-00(1; Nz = zeaa]® + W((1 = 0)z; + 02041) <

V(zi, 2 ) + Wizqa),
or % 1
V(I{, Jig) -+ W((l - 0)3‘ + 0-'!:‘.(.]) < V(I;,I(.}.]) - "2‘00"I¢ - ZH.]“z + W(Ig+1).
Summing up over ¢, becausc of the concavity of W, we have
- N N 1 N
Z Vi(zi, z) < E V(xn -‘5t+l) — =of z e = 241 “2
) =1 t=} 2 =1
which contradicts (7), being ol = a(ay/a) = o .o

Finally, if V is diffcrentiable in the sccond set of arguments, we have the following criterion
to detect acyclicily, which is very useful [rom the comnputational point ol view (we usc the
notation Va(z,y) = V, V(z,¥)). '

Proposition 6 Assume V is as in A3, and differentiable in the second sel of arguments. Then
V s addilively 0-acyclic for some 0 < 0 < 1 if and only if

N
Z Valzi Z) (241 = 2) £ 0 (9)
i=1
Jor every sequence of distinct poinis {zy...zn]} in X witlh anyy = 24, for cvery N.

Prooft  Let the sct {z;...xn} satislying Lhe assumplions of the proposition be given in X,
and set ¢(0) = TN, V(x,0204; + (1 — 0)z,). ‘¢ is strictly concave on [0, 1] since V(z,-) is
concave by assumption. Also, ¢(0) = (1) because V is acyclic. llence ¢/(1) £ 0, which is

N
¢i(1) = Z Va(zg 2041} - (241 — 2) €0
t=1

Converscly, suppose that (9) is satisfied for the generic suitable {z,...zx}. Since V(z, ) is
concave and differentiable, we have

V(Ig, @t.’,])‘ s V(I‘,ozu.] -+ (l - 0)-’5;) + (1 - 0)‘/2($‘,0$H.1 + (l - 0)1;)(3(.;] - I‘).




Summing up over ! we have

N ¥
T V(zt, ze) € 3 V(zn 0z + (1 - 0)2) + @

t=1 t=1
where
: N
Q=(1-0)|> Va(z, 0241 +(1 = )z Y Ter1 — Ze)| -
Ll
But the quantity between brackets is nonpasitive by (9), and so

N N
V(2 Tean) € 3 V(e 0z + (1 - 0)z)
1

=1

t=

holds, which implies the additively 0-acyclicity of V. wl

Example 1. Take X a convex subsct of R™, and D = X x X. Let Viz,y) = ¢lz) +wly) +
w{z,y), with ¢(z) a-concave on X, #(y) 3-concave on X and (-} denotes the inner product.
One may easily check that V' will be concave il 42 < af, and will be strictly concave in the
second argument if g > 0.
If >0, Vis 0-acyclic. In fact, exploiting the relation

Nee = 2ol = Nz + el — 2(ze zeaa)

we get
N

. N
2 Z("’n i) S Z flaell?,
=1

t=]
which is the sufficient condition (5) il g 2 0 (with 0 = 0).
If # < 0 one has, always using the above relation,

N N , M N )
uZ(x“x,“) =H lezdl ) Z[lx, -zl
t=1 t=1 {=1

o N N P ,
ﬂ}:"h"z =p Z(InIHx) + 5 ZHT( -zl
[£293 t=1 2 t=1
Then, if =8 < g, V is acyclic with 0 = ||/ by Proposition 3. <

4.3 Bellman’s equation: the one—dimensional case
As in the n-dimensional case, the relation we will consider is
y Pz & V(z,(1 ~ 0z + 0y) + §W5((1 = 0)z + 0y) < V(z,y) +-§Wi(y). (10)

But now, due to Theorem 3.2, we have more information. For example, we nced not check a
total acyclicity of the relation Py, since it is enough to rule oul odd periodic poiutls to cnsure
a certain degree of dynamical regularity of the map 7. The icing on the cake is that, Lo rule
“out periodic points of any period, it is sufficient to check that the relation P is not 2-periodic.
Making usc of Theorem 4.2 we get
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Proposition 7 Let X be an interval in R. If, for some 0 € [0,1), V satisﬁcs.
Vi(z, (1 =0)z + 0y) + V(y, (1 - O)y + 02) 2 V(z,y) + V(y,2)
Jor all (z,y),(y,z) € X x X withz # y, then V is additively §-acyclic.

Proof.  We are going to use Theorem (3.2). First, one must check that P satisfies the regularity
conditions i)-iii) of Subsection 3.2.

i) is satisfied because of the continuity of V (and consequently of W).

ii},is true because of the concavily of V{z,-).

iii} holds because the strict concavity of V and the fact that § < 1 imply that P(z) # 0 for
alzg X.

Now the proof is immediate, stemming {rom the comparison of Theorem 4.2 and Theo-
rem 3.2, : o

Now, let us define the unimodularity property, and show its-connections with acyclicity

(see [4]). ,
Definition 6 A function V(z,y) defined over X x X is called

¢ supermodular if for any lwo pairs z,,z, end y1,y; in X with z; € 24, y; < y2 we have
V(zi,n) + V(z2,92) 2 V(1 y2) + Vi, )

» submodular if in the same situalion we have V(z,n)+V(z2,y2) < V(zi,y2) +V(z2, 1)
Proposition 8 Lel X be an interval, and V : X x X -—+ R be unimodular. Then

o if V is supermodular the policy funclion 75 is non-decreasing

¢ if V is submodular the p;:»licy Junction 75 is non-increasing

Proof.  One should note, first of all, that V(z,y) unimodular implies that U(z,y) = Viz,y)+
6Ws(y) is also unimodular. Let us consider the supermodular case, the other one being com-
pletely symmetric. Set z; < z; and suppose, by contradiction, that 75(z;) > 75(x2). Set yp =
75(z1) > yi = 75(z2). Supermodularity gives: Uz, ms(z2)) + U(za, 75(z1)) > Ulzi,ms(zy)) +
U(xz, 7s(z2)). Strict concavily together with the optimality principle give

U1, 75(21)) + Ulzz, 75(24)) > Uz, 15(22)) + Ulza, 8(21)),

a contradiction. o

We are now ready to show thal supermodularity implics acyclicity, that is, acyclicity is a
weaker condition that permits to have regular behaviours.

Proposition 9 Consider problem 1 wilh dim(X) = 1. In this case, if V is supermodular then
il is aedditively 0-acyclic.

Proof. . We nced only show that the conditions of Proposition 7 are satisfied. Let z and y be
two points in X with, say, 2 < y. In the definition of supermodularity sct z; = ¥y = x and
Ty = Y2 =Y.

This gives V(z,2) + V(y,y) > V(z,y) + V(y, z), which is the desired inequality. o
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REMARK: The converse is not true. See Example 2 <

An important class of return functions is that of the functions V(z,y) = U(f(z) - g(v)),
where U is concave and f and ¢ are nondecreasing functions. The relevance of this class of
one-period return functions is that it covers the standard model of one-sector growth. It turns
out that functions in this class are supermodular.

To prove our claim, suppose z, < z,. One has

(z2) — g(y1) 2 f(z1) = 9(1) 2 [{z1) ~ g(y2)
and
flza) ~ g(w1) 2 F(z2) ~ 9(ya) 2 f(z1) ~ 9(wa)-

If we denote Af = f(z3) ~ f(x,), using the above inequalities and the fact that U is concave
we gel '

UJ(z2) = g(y)) = U(f(z1) = g(n)) . U(f(za) — 9(2)) — U(S(21) — 9(va))
af - af '

U(J(za) — 9(y)) + U(f(21) — gg2)) S U(S(22) = g(y2)) + U(f(20) = am)),

which is the definition of supermodularity.
In the case of differentiabilily, we can say (see Proposition 6)

Proposition 10 Assume V is as in A3 and C'. Then V is additively 0-acyclic for some
0< 0 <1 if and only if

Va(zy) = Valy, o)l ~2) S0 V(z,y),(v,2) € X x X, (11)
When V is twice differentiable the (11) implies Vio(z,z) > Vio(2, z).

Example 2. Consider V(z,y) = az + by — (1/2) Az® ~ y? — zy — (1/2) Bzy? defined on any
set D C [0,1] x [0,1]. For the following sct of parameters V satisfies Assumption A3: A > 1/2,
B2 —2, and (24~ 1) > B(B +2). This function also satisfies Condition (11), and is therefore
acyclic because of Proposition 10. Furthermore, when B > 0, V(z,y) is submodular, whereas
for B < 0V is ncither sub- nor superinodular. This proves the claim that acyclicity does not
imply supermodularity. <

4.4 Low-period cycles

As an application of our approach, which we regard as a field in which work has yet to be done,
in this section we tackle the problen of excluding not all cycles, but just those of high period.
Again, we have Lo restrict ourselves to the casc of X a subsct of the real line. A first step in this
direction was Theorem 3.2 on the ranking of the cycles of a relation. But the theorem has the
practical problem that it is difficult, for many relations, to exclude cycles of higler order once
one has ascertained the presence of period-two cycles. Moreover, the discount factor plays no
role, in the sense that the acyclicity of a rclation is independent of the magnitude of 8.

Onc could then think to study another relation, that we could call P?. This relation would
be satisfied by the sccond iterate of 7. If P? was acyclic, then we would know that 7 has no
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periodic points of period 4. But this, by Sarkovsky’s theorem, would exclude periodic points
of any period other than 2. Morcover, it is our hope that further work in this direction may
highlight the role of the discount factor 8.

Let us define a new function V2, defined as

V3{(z,y) = max V(z,u) + 6V(u,y) such that (z,u),(u,y) € D. (12)

Now, let D? = {(z,y)| there is a u such that (z,u),(u,y) € D}. A litile reflection shows that,
if D satisfies A2, then D? satisfies A2 too. On the other hand, if V satisfies A3, then V? satisfics
A3. Then the problem
W) = max Vi(z,y)+ W) (13)
vED?(x)

yelds a well-behaved function, which is the second iterate of 7.
The relation P? is defined as

yPiz & V¥{(z,(1 = 0)z + Oy) + SW((1 ~ 0)z + Oy) < V3, y) + W (y),

where W(-) is some concave function. To exclude periodic points of period 4, we nced to check
the acyclicity of V2. Moreover, since V? depends from §, we hope to exploit this dependence.

. Example 3. Set

zz

¥ v
Vi,y) = -5 —byz+ k5 -,
with X =[0,1]and D = X x X.
One may check that V is concave iff £ < 0% If b > 1, then using Proposition 10 we find
that V is not additively 0-acyclic for any 0 in (0,1).
Calculating V? yelds

2 3 v
2 R A < i
V(x,y)-k2 53 52,

and again using Proposition 10 one finds that V? is acyclic. Hence, although V is cyclic, the
only possible cycles are of period two. This result is, again, valid for any value of the discount
factor.

Theorem 3.2, applied to this case, produces cumbersome calculations that we have not tried
to manage. <

Example 4.  Set
V(z,y) = ~2’ ~y —zy — ¥’z (yz +1)
with X = [0,1} and D= X x X.

One readily calculates that V is cyclic, bul computing V2, one finds that Vy(z,y) = —2% -8y
is acyclic. ’ <
The preceding examples all had the feature Lthat the value of u maximizing cxpression (12) was
on the boundary of the admissible values. In facl, a litlle reflection shows that, if such a fealure
is verified, then V? is acyclic, since it is the sum of two functions respectively of z and y. But

it is nol true that, in case the valuc of u is inlernal to the feasible sct, then V2 is cyclic. This
is the argument of the following

:
f
i
{
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Example 5. Set V(z,y) = pz® —y — 2y + pz, with X = [0,1], D = X x X and 4
a positive parameter. The same calculations performed in the example above yeld that V is
cyclic. Working out V2, one finds that il 4 > 1+ (2/6) then u is interior to X, and

_6y+z+l

Substituting, after long-lasting algebra one gets
V:zz(xv y) = —'6!

which shows that V? is acyclic. o

Note that the function V used in this last example is strictly concave in the first variable rather
than in the second. In fact, this hypothesis could have been made in A3 with no harm for the
propertics of the policy function, except for the case in which the discount factor equals 0.
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