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Abstract: This paper develops an incentives-based theory of policing

that can explain the phenomenon of random “crackdowns,” which are inter-

mittent periods of high interdiction/surveillance. We show that, when police

minimize the crime rate, random crackdowns can emerge as part of an op-

timal policing strategy. We develop several variations of the basic policing

model that would apply in different monitoring situations, such as speeding,

drug interdiction, or screening to deter terrorism. For a variety of police

objective functions, random crackdowns can be part of the optimal moni-

toring strategy. We demonstrate support for implications of the crackdown

theory using traffic data gathered by the Belgian Police Department and use

the model to estimate the deterrence effect of additional resources spent on

speeding interdiction.
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1 Introduction

Police often engage in “crackdowns” on crime, which are intermittent periods of high

intensity policing. This paper develops a theoretical framework for modeling police mon-

itoring behavior and individuals’ decisions to engage in crime. Within this framework,

we show that there are situations where it will be optimal for a crime-minimizing police

agency to engage in random crackdowns. When they occur, crackdowns also provide a

way of estimating the deterrence effect of policing. We illustrate the application of the

model in analyzing a speed deterrence program used by police in Belgium. In particular,

we estimate the deterrence effect of additional resources spent on ticketing speeders and

assess whether the current level of deterrence is socially optimal.

Two features characterize our notion of random crackdowns. First, they are arbitrary,

in the sense that they subject certain groups (identified by presence in a particular

time or place, or by other observable characteristic) that are not notably different from

other groups in criminal propensities, to higher intensity police monitoring. Second,

they are publicized, i.e., those who are subjected to crackdowns are informed about

them before they engage in criminal activity.1 Crackdowns are employed in a number

of policing situations. Some examples include drunk driving interdiction accomplished

using sobriety checkpoints, crackdowns on speeding achieved through announced greater

police presence on certain highways, or crackdowns on drug trafficking aimed at particular

neighborhoods.2

Criminologists sometimes rationalize the use of crackdowns by appealing to psycho-

logical theories according to which the impression created by the temporary show of

force (the crackdown) is a psychological “bluff” that leads potential criminals to over-

estimate the risk of detection during non-crackdown periods.3 This view relies on the

1Our definition of crackdown is different from the conventional use of the term in the literature

on policing (see e.g. Di Tella and Schargrodsky 2002, 2004) because we require that crackdowns be

arbitrary. We will return to this point when we discuss the related literature.
2For example, operation “safe streets” in Philadelphia, which puts heavy law enforcement on partic-

ular city blocks, received extensive media coverage. Other examples of crackdowns include the NHTSA

campaign “You Drink & Drive. You Lose” which instituted highly visible enforcement against drunk

driving. Another example is “Checkpoint Tennessee,” Tennessee’s statewide sobriety checkpoint pro-

gram.
3Sherman (1990), Ross (1984). Sherman, p. 11, recommends that crackdowns be highly publicized
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potential criminals’ expectations being systematically wrong and therefore is inconsistent

with rationality. In this paper, we take a different approach and develop a model in

which potential criminals are not fooled about the odds of detection and yet the crime-

minimizing police finds it optimal to employ crackdowns. In our model, crackdowns arise

as a rational (indeed, optimal) response of both police and citizens’ incentives. They also

arise under a variety of ways of specifying police objectives, for example, if the police

minimize total crime, or undetected crime, or if they solve the social planner problem of

trading off the costs and benefits of crime.

We next illustrate the main idea behind this result through a simple example where

the police minimize crime subject to a resource constraint.

Example Consider a population of 100 citizens, half of whom would never commit

a crime, and half of whom would commit a crime unless they are certain that they will

be caught. A citizen’s propensity to commit a crime is unobservable to the police. The

police resources are such that they can only check 50 citizens. Suppose that the police

check citizens at random (note that all citizens look the same to police), so that each

citizen has a probability 1/2 of being checked. Then, only the high-propensity citizens will

commit a crime, giving rise to a crime rate of 1/2. Suppose now that half of the citizens

have blue eyes, half have brown eyes and that eye color is known to be independent of the

propensity to commit a crime. Nevertheless, suppose that police crack down on brown-

eyed citizens and check them all, and completely ignore the blue-eyed citizens. Then no

brown-eyed ever commits a crime because they are sure that they would be caught, and

only those blue-eyed citizens commit a crime who have high criminal propensity. Thus,

the crime rate with a crackdown on brown-eyed persons is 1/4, which is lower than the

crime rate of 1/2 obtained without crackdowns.

This thought experiment shows that crackdowns can reduce crime by introducing

disparate treatment within a population of observably identical individuals. We have

not proved that the specific way in which citizens are divided and policed (blue-eyed v.

brown-eyed) is the optimal one for reducing crime, though this is indeed the case. We

show later in the paper that given any distribution (continuous or discrete, unimodal or

and be followed by secret “backdowns," and warns of the risk of exhausting the bluff through overuse.
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multi-modal) of the propensity to commit a crime, the crime-minimizing policing scheme

involves dividing the population into no more than two groups, not necessarily of equal

size. The example also highlights an important maintained assumption of our theory:

for crackdowns to be effective, it is important that criminals cannot easily arbitrage

between crackdown and non-crackdown groups. In the example, citizens are assumed to

be unable to change their eye color.

Let us now return to the example to consider how crackdowns make it possible to

estimate the deterrence effect of policing.

Using crackdowns to identify the deterrence effect of policing Consider

now an increase in police manpower to 51 checks. How does the optimal policing scheme

change? It can be shown that the optimal policing scheme involves moving one person

from the non-crackdown group to the crackdown group. That is, police would pick a blue-

eyed citizen, force him to wear brown contact lenses, and then check with probability 1 all

those who appear to have brown eyes. The remaining citizens (with blue eyes) are never

checked. We can calculate the expected decrease in the crime rate that follows from an

increase in manpower of 1 check: it is the decrease in crime that obtains from moving a

random citizen from the group that is not cracked down upon to the group that is cracked

down upon. Because the average crime rate in both groups is observed, we can readily

compute the expected decrease in the crime rate – in this case, the expected crime rate

goes from 25 percent to 24.5 percent.

In this paper, we develop a model of policing in which a police chief is given an incen-

tive to reduce crime and a certain amount of resources. Under a variety of assumptions

about police goals and constraints, the optimal monitoring strategy can take the form

of random crackdowns. As in the above example, our analysis provides a methodology

for estimating the deterrence effect of policing.

We apply our policing model to analyze the effectiveness of resources spent on speed-

ing interdiction. Although the decision to speed is rarely studied by economists,4 it has

great economic relevance, both in the U.S. and worldwide. According to data from the

4With some notable exceptions which will be discussed later: see Peltzman (1975), Levitt and Porter

(2001), and Ashenfelter and Greenstone (2004).

5



National Highway Traffic Safety Administration (NHTSA), speeding is a factor in 30

percent of all fatal crashes in the US.5 In 2001, more than 12,000 people died in speed-

related crashes on American roads, at an economic cost to society of more than $40

billion.6 Worldwide, traffic injuries rank second to HIV/AIDS as the leading cause of

ill-health and premature death among the 15-44 age group. Because the number of ve-

hicles per capita is rapidly growing in developing countries, traffic injuries are projected

to be one of the leading public health issues over the next few decades.7

To deter speeding, police in several countries have adopted programs of announced

radar controls that publicize the location and approximate time of operation of radar

controls.8 The data analyzed in this paper were gathered in the Belgian province of

the Eastern Flanders during the years 2000-2003. We have observations on all radar

controls in that time period affecting 6.5 million cars and resulting in 206,146 tickets

issued. The announced controls in the data are observed to rotate in a fairly mechanical

fashion across different sections of the roads and time periods. The police plan the

announcement schedule at least one month in advance, and the timing of announcements

does not appear to be systematically related to speeding propensity. We interpret the

announced controls as crackdowns on particular groups of motorists, those traveling on

the announced section of the road at the announced time. We measure the deterrence

effect of the increased probability of detection by comparing decisions to speed within

the crackdown and non-crackdown groups. Using implications of the theoretical model,

we are able to calculate the effect of increasing the level of resources devoted to speeding

interdiction. In conjunction with value-of-life estimates, our results indicate that at the

current level of interdiction, the marginal benefit, in terms of statistical lives saved, is

close to the marginal cost of interdiction. Importantly, our analysis demonstrates that the

rational theory of optimal interdiction can have not only normative implications (how

the police should behave), but can even generative positive predictions about actual

police behavior (how some police actually behave).

5See Traffic Safety Facts 2001.
6Over 80 percent of the economic cost is attributable to lost workplace and household productivity.

See Blincoe et al (2002).
7See the WHO publication on traffic safety: http://www.who.int/world-health-day/

2004/en/traffic_facts_en.pdf.
8For example, the Netherlands, Belgium, Germany and Australia.
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The paper develops as follows. Section 2 presents a theoretical model that we use

to study the conditions under which crackdowns emerge as an optimal policing strategy

when the goal of police is to minimize crime subject to a resource constraint. The

model allows for unobserved heterogeneity in the benefits citizens get from breaking

the law, under the assumption that the police knows the distribution of the unobserved

variable. The model is extended to the case where the police is constrained in terms of

the number of successful interdictions, which is the case in our application to speeding.

Section 3 applies the model developed in Section 2 to data that we obtained from the

Belgian police department. Section 4 provides a discussion and some further extensions

and applications, including tax evasion, drug interdiction, internal compliance, and the

collection of TV licenses in Sweden. Section 5 concludes.

1.1 Related Literature

The idea that deterrence may be improved by focusing interdiction on arbitrary subsets of

the population is present in the literature on racial profiling (see Persico, 2001). Recently,

Lazear (2006) develops a related idea in the context of designing educational tests, where

the question is how much of the test content to reveal to the test-takers ahead of the

test.9 In the nutrition literature, there is a related idea in connection with nutrition

curves. For example, Pratap and Sharma (2002) argue that, in the presence of limited

amounts of food, maximization of family survival and resources may entail an unequal

distribution of nutritional resources, i.e., focusing resources on a subset of the family.

Relative to these strands of literature, the contribution of this paper is (a) to pose a

general policing problem and to characterize the optimal policing strategy; (b) to point

out that crackdowns (in our terminology) allow the researcher to infer the deterrence

effect of policing; and, (c) to empirically illustrate the methodology within a policy-

relevant application, speeding.

Our work is also part of the literature on bureaucratic incentives. The most relevant

papers in the economics literature are Prendergast (2001) and Shi (2005). These papers

look at the effect of bureaucratic oversight on policing, with special reference to race

9Coincidentally, Lazear (2006) also cites speeding as a potential application in developing his argu-

ment, but his and our work are independent. We discuss his paper in detail below in section 4.1.
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disparities. Our paper also compares the strategies adopted by police under different

incentive schemes, although that is not the main focus.

More broadly, the issue of deterrence in a traffic context is a subset of the vast

literature on crime.10 Of direct relevance to this paper is the literature concerned with

traffic enforcement (speeding, drunk driving, and seat-belt wearing), which is reviewed

by Zaal (1994). Much of the literature on speeding attempts to quantify the effects of

a change in the speed limit on accidents.11 There is also a literature directly concerned

with police enforcement and with estimating the deterrence effect of increased policing

and of greater penalties on speeding.12 Parallel literatures deal with the deterrence effect

of increased policing and greater penalties on drunk driving and on seat-belt wearing.13

Also related is the literature that studies the connection between risk-taking behavior

(speeding, drunk driving) and accidents (see Levitt and Porter (2001)). A paper by

Ashenfelter and Greenstone (2004) uses changes in the speed limit across US states to

estimate the value of a statistical life. They also provide a rich summary of economics

papers in this area.

We acknowledge that our use of the term “crackdown” is somewhat different from

the way the term is occasionally used to refer to increases in interdiction that are not

deliberate randomizations, but rather may be considered exogenous increases in resources

in the sense that they are caused by events unrelated to the crime that is the object

of study. For example, Di Tella and Schargrodsky (2002, 2004), study the effect of

crackdowns on bureaucratic corruption and on crime. Our work complements this line of

inquiry by pointing out that “random” crackdowns can be expected to arise endogenously

as part of the optimal policing strategy.

10See Becker’s seminal (1968) paper. Also, see Levitt (1997) for a recent study of deterrence in law

enforcement.
11See for instance Balkin and Ord (2001), Lave (1985, 1989) and the literature cited therein, and

Ledolter and Chan (1996).
12See e.g. Redelmeier et al (2003), Homel (1988a), Ross and Gonzalez (1988).
13See e.g. Ross (1984) for drunk driving and Campbell (1988), Peltzmann (1975) for seatbelt use.
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2 Policing Model

In this section, we characterize optimal monitoring strategies in a model in which the

police minimize crime subject to a budget constraint. One may think of this problem as

originating from an agency relationship in which a principal (a politician, a bureaucrat,

or a high level police administrator) is faced with the problem of giving incentives for an

agent (the police chief) to allocate resources effectively towards achieving some socially

desirable outcome, such as a lower crime rate.14 Citizens, who differ unobservably in

their propensity to commit a crime, choose whether to commit a crime. We assume

that the agent knows the distribution of the propensity to commit crimes across the

population, but the principal only observes the realized crime rate (which depends on

police behavior) and therefore gives the police chief incentives to minimize crime subject

to a resource constraint. We also assume that the police chief receives some amount of

resources (e.g. manpower), and that he can commit to choosing which citizens to police

and with what intensity.

In Section 2.3, we explore several variants of this problem, including one in which the

agent takes into account individual benefits from crime.

2.1 The model

There is population of size 1 that is heterogeneous in the benefit x from committing

a crime, assumed to be unobservable by the police. Let x be distributed across this

population according to a c.d.f. F , and let p denote the probability that the citizen is

monitored. If a citizen commits a crime and is monitored, he is caught and receives

penalty T .15 We assume that p ∈ [0, p], which implies that a citizen can be monitored
with probability no greater than some p ≤ 1.
14Besides crime reduction, the principal might have other objectives. For example, a principal might

want to allow some citizens who get the highest value to commit crimes. We will explore this point in

Section 4.5.3.
15Here we assume that the citizen’s utility functions are linear and that committing the crime is a

discrete decision, but in Section 4 we relax these assumptions. Also, for the moment we take T as given.

We will return to this issue in Section 4.
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A citizen with benefit x commits a crime if

x− pT > 0. (1)

If a group of citizens is policed with intensity p, the fraction of criminals is

1− F (pT ) .

The police minimize the crime rate. One possible policing strategy is to monitor every

citizen with the same probability. Alternatively, the police can divide the population into

subgroups and police them at different intensities. Of course, this division only matters

if the citizens know that they are policed with different intensities, so we will assume

that each citizen knows the intensity.16 We denote by µ (p) the size of the group policed

at intensity p. Because the total size of the population is 1, it must be
R p
0
µ (p) dp = 1.

The contribution of group µ (p) to total crime is µ (p) (1− F (pT )), and aggregating

over all groups gives the total number of criminals:Z p

0

µ (p) (1− F (pT )) dp. (2)

In this section, we assume that the police’s goal is to minimize the number of criminals.

Alternative specifications of the objective function are studied in Section 2.3, where we

also look at the social planner’s problem.

Let us now turn to the resource constraint. The police chief is assigned some amount

of resources (such as officer-hours). Monitoring a group of size µ with intensity p is

assumed to require police resources in the amount of µ · p. If total resources of P per

capita are available for policing, the aggregate police resource constraint isZ p

0

µ (p) pdp ≤ P. (3)

We refer to this constraint as a time constraint. An alternative way of specifying the

constraint on police resources is explored in Section 2.3. The police chooses a probability

measure µ to minimize the number of criminals (2) subject to the resource constraint

(3).

16In practice, this means that the police must inform citizens of the intensity with which they are

policed.
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2.2 Analysis

We next provide an intuitive characterization of the properties of the solution to the

police problem previously described. These properties are summarized in Propositions 1

and 2. The propositions are a consequence of Theorem 1, which is stated and proved in

Appendix A.

Let us start by supposing that the solution to the police problem entails policing all

citizens with the same intensity. By the resource constraint, this intensity must equal P .

In terms of our model, this policing strategy corresponds to µ (p) equal 1 if p = P , and

equal zero otherwise. Substituting this choice of µ into the objective function (2) we see

that the number of criminals equals S = 1 − F (PT ) . This situation is depicted in the

left hand panel of Figure 1.
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Figure 1. A crackdown is optimal.

As seen in the right panel of the Figure 1, the number of criminals can be reduced

if resources are allocated differently. If some citizens were policed with intensity pL and

the rest were policed with intensity pH , then it would be possible to bring the number

of criminals down to S0 < S.

Citizens who are policed with intensity pH are said to be subject to a crackdown.

Figure 1 shows that crackdowns help “iron out” the inward bumps of the function 1 −
F (pT ), thus enabling the police to maintain policing intensity on the efficient frontier.

More precisely, by using crackdowns the police elicit a response function from citizens

that corresponds to the convex hull of the epigraph of (i.e., of the area above) the function

1− F (pT ).

More formally, this crackdown strategy corresponds to choosing µ (p) > 0 if p =
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pL, pH , and equal to zero otherwise. The fraction µ (pH) is optimally chosen to be the

largest possible compatible with satisfying the resource constraint (3), which therefore

reads

(1− µH) pL + µHpH = P.

Of course, crackdowns are not always part of the optimal policing strategy. If, for

example, the function 1−F (pT ) is globally convex, as depicted in Figure 2, then crack-

downs would not be optimal. Even in Figure 1, if P were smaller than pL or larger than

pH , crackdowns would not be optimal. In those cases, the most efficient use of resources

is to police every citizen with the same intensity.

P 

1-F(pT)

Fraction 
speeding  

Figure 2. Crackdowns are not optimal.

When crackdowns are optimal, it is because the function 1 − F (pT ) is not convex.

Given that crackdowns play a “convexifying” role, there is no additional gain in dividing

the population in more than two groups. In fact, given any function 1 − F (pT ), any

point in its convex hull can be achieved as a convex combination of at most two points

in its epigraph. A three group crackdown, therefore, which would entail three different

policing intensities, can achieve nothing more than a two-group crackdown. The following

proposition actually takes this logic a bit further in stating that “generically,” three group

crackdowns are strictly suboptimal.

Proposition 1 Given a homogeneous population with a generic distribution of propen-

sity to commit a crime, the optimal policing strategy involves either monitoring everyone
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at the same rate, or dividing the population into at most two groups to be monitored with

different intensities.

Proof. This proposition follows from Theorem 1 , which is proved in Appendix A. 17

An extreme form of crackdowns arises when 1− F is globally concave. In this case,

the convex hull is given by the segment that connects the points (0, 1− F (0)) and

(p, 1− F (pT )), which means that for any P we have pL = 0, pH = p. Thus, the optimal

policy entails the use of extreme crackdowns: one group of citizens will be monitored as

intensely as possible, the rest will not be monitored at all.18 This observation gives rise

to the following remark.

Remark 1 If F is convex on its domain, then for any P ∈ (0, p) the optimal polic-
ing strategy involves monitoring one group of citizens with maximal intensity, and not

monitoring the others at all.

It is worth pointing out that crackdowns are generally optimal for some P unless f

is monotonically decreasing on its support.

Remark 2 Unless F is concave on (0, pT ) , there exists some P such that the optimal

policing strategy involves random crackdowns.

We now turn to the comparative static result that deals with increases in the police

budget in the presence of crackdowns. The intuition behind the result can be explained

using Figure 1. Suppose that P , the amount of resources available to the police, is

increased slightly. Although the fraction of citizens who are subjected to a crackdown is

now higher because more resources are available, the optimal police strategy still entails

a crackdown with intensities pH and pL. In other words, only the sizes of the two groups

change, but not the intensity with which they are monitored. This simple but important

point, which we note in Proposition 2, is important to being able to use crackdowns to

infer the effect of relaxing the resource constraint.

17Theorem 1 in Appendix A is a general formulation of the problem we solve here. It allows for

different variations, including those we explore further in the paper. By proving the result for the

general case, all our results follow for each of the specific cases considered.
18This is the case described in the example in the introduction.
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Proposition 2 Given total police resources of P , suppose the optimal policing strategy

involves dividing the population into a crackdown group of size µH monitored with inten-

sity pH and a non-crackdown group of size µL monitored with intensity pL. Consider an

increase in total police resources to P̃ ∈ (P, pH). In the new optimal strategy the crack-
down group is larger than before, (i.e., µ̃H > µH and thus µ̃L < µL, the non-crackdown

group is smaller), but the intensities with which the two groups are monitored remain

unchanged (they are still pH and pL).

Proof. This proposition follows from Theorem 1 , which is proved in Appendix A.

Proposition 2 provides a way of forecasting the deterrence effect of an increase in

police resources. Crucially, the approach does not require knowledge of the shape of the

function 1 − F (pT ). Refer again to Figure 1. Graphically, increasing P results in the

crime rate S0 sliding down along the shaded segment. The slope of the shaded segment,

therefore, determines the degree to which crime decreases as resources increase. This

slope can be calculated based on the formula

[1− F (pHT )]− [1− F (pLT )]

pH − pL
.

Multiplying this slope by eP − P provides a way of estimating the expected decrease in

crime due to a hypothetical increase in police resources from P to eP . Thus,
∆Crime
∆P

=
(crime rate|pH)− (crime rate|pL)

pH − pL
.

The terms in the numerator on the right-hand side (the crime rates with and without

crackdown) as well as those in the denominator (the intensity of monitoring) would be

observable in most applied settings in which crackdowns are observed.

To see why observing crackdowns is necessary to carry out this computation, consider

the no-crackdown primitives depicted in Figure 2. We are interested in forecasting 1−
F
³ ePT´, the crime rate after the increase in the budget. Absent any information on

the shape of the function 1− F (pT ), there is no way to compute 1− F
³ ePT´ based on

the available information, which is only the knowledge of 1 − F (PT ), the initial crime

rate. This is why most of the literature on deterrence focuses on identifying sources of

exogenous variation in P , which allows one to trace out (or at least locally approximate)
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the function 1 − F (PT ) as P varies. However, in the presence of crackdowns there is

no need to identify sources of exogenous variation in P to identify the deterrence effect.

One can think of crackdowns as being a case where exogenous variation in P arises as

part of the optimal policing strategy.

If, in addition to observing crackdowns, one also has access to exogenous variation in

total police resources P , then Proposition 2 yields a testable implication of the model.

The implication is that, as P increases (between pL and pH), the optimal monitoring

intensity should not change, but the size of the group subjected to crackdowns should

increase. In Section 3.4, we consider this implication in the context of speed interdiction.

2.3 Constraint on successful interdictions

In the empirical application of section three, the Belgian police are given a constraint

on the total amount of tickets that they are allowed to write, rather than a constraint

on manpower. In this Section we adapt the model to the problem faced by the Belgian

police.

As before, we assume that the goal of the police is to minimize the crime rate subject

to a constraint. The resource constraint is now given in terms of the number of successful

interdictions rather than in terms of time resources. That is, monitoring criminals has a

cost to the police, but monitoring honest citizens is costless. This captures environments

in which interdiction is cheap relative to the cost of processing violations. This happens to

be the case in our speeding application of Section 3, where the police are administratively

restricted in the number of tickets that they can issue in a year.19

The term (1− F (pT )) · p represents the number of successful interdictions from a

population that is policed with intensity p. To capture the constraint on successful

interdictions we modify the constraint (3) to readZ p

0

µ (p) (1− F (pT )) p dp ≤ C. (4)

The police minimizes expression (2) subject to the constraint (4).

19This makes sense because detecting speeders with automatic radar machines is almost costless

relative to processing a traffic ticket. More on this in Section 3.
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To rule out trivial cases where the resource constraint is not binding, we assume that

C is such that the police could not afford to monitor everyone with maximal probability.

This assumption, which will be maintained throughout, is

Assumption C < (1− F (pT )) p.

The present problem shares a key formal similarity with the benchmark model: both

programming problems are linear in µ. As a consequence, even though constraint (4) and

constraint (3) are quite different, Propositions 1 and 2 continue to apply. In constraint

(4), for example, the kernel of the integral is not necessarily increasing in p: higher

monitoring intensity does not necessarily entail more successful interdictions. Yet, at

the optimal solution, one can show that more resources (successful interdictions) must

be expended per capita on the crackdown group than on the other group. One can also

show that whenever crackdowns are optimal in the benchmark model for all values of P ,

then they are also optimal when police are ticket constrained. These results are collected

in the following proposition.

Proposition 3 Consider a monitoring problem in which police minimize crime under

the constraint that successful interdictions not exceed C. Then:

a) The optimal monitoring strategy involves either monitoring everyone at the same

rate or dividing the population into at most two groups, which are monitored at different

intensities.

b) Given C, suppose the optimal policing strategy involves dividing the population

into a crackdown group of size µH monitored with intensity pH and a non-crackdown

group of size µL monitored with intensity pL. Consider an increase in C to eC ∈
(C, (1− F (pHT )) · pH). In the new optimal strategy the crackdown group is larger than
before, (i.e., µ̃H > µH and thus µ̃L < µL, the non-crackdown group is smaller), but the

intensities with which the two groups are monitored remain unchanged (they are still pH
and pL).

c) At the optimal monitoring strategy, the expected number of successful interdictions

per capita (the probability that there will be monitoring multiplied by the fraction of

motorists who speed) is larger in the crackdown group than in the non-crackdown group.

d) Crackdowns are optimal for all values of C if they are optimal in the benchmark

model for all values of P . The converse is not true.
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Proof. a), b): see Theorem 1.

c) Suppose not. Then if one perturbed the optimal strategy by shifting a small mass of

citizens from the non-crackdown group to the crackdown group, the resource constraint

would continue to be satisfied and the crime rate would decrease. This contradicts

optimality of the original strategy.

d) Let P denote the maximal feasible policing intensity when all motorists are po-

liced with the same probability. This is the monitoring intensity that minimizes crime

among all feasible non-crackdown strategies. For future reference, observe that feasibility

implies C = P (1− F (PT )). Consider now the ancillary problem which is to minimize

crime subject to the constraint (2). Let µL, pL, µH , pH denote the optimal crackdown

probabilities in the ancillary problem. By definition, this crackdown policy generates a

lower crime rate than if all citizens were policed with intensity P . We now show that the

same crackdown strategy is feasible in the original problem. This will prove that equal

policing is dominated by crackdowns in the original problem.

To verify feasibility in the original problem, write the following chain of inequalities:

C = P (1− F (PT ))

= [1− F ((µLpL + µHpH)T )] (µLpL + µHpH)

≥ µLpL (1− F (pLT )) + µHpH (1− F (pHT )) ,

where the inequality reflects the concavity of the function x [1− F (xT )]. This function

is concave because F is convex, which we know because crackdowns are optimal for all

values of P in the ancillary problem (refer to Remark 1).

Part d) of the above proposition suggests that crackdowns can be optimal when the

police are ticket constrained even in cases where they are not optimal in the benchmark

model. The intuition for crackdowns when the police faces constraint (4) is as follows.

In a crackdown, the high interdiction group commits little crime, while the group that

is more prone to committing crime is rarely policed. This tends to reduce the number of

tickets that are written relative to the case in which both groups are policed at the same

rate. Thus, besides helping satisfy the objective function, engaging in crackdowns has

beneficial effects on constraint (4). The second effect was not present in the benchmark

problem.
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Part (b) of Proposition 3 yields a useful formula for computing the effect of an increase

in police resources on the crime rate. Because this formula will be used in the empirical

work in section three, we derive it here. The crime rate given eC equals

eµ (pL) · (1− F (pLT )) + eµ (pH) · (1− F (pHT ))

(note that there is no tilde over the p’s in light of Proposition 3 part (b)). To obtain the

change in crime, subtract from this expression the analogous expression when resources

equal C. This yields

∆Crime (5)

= [eµ (pL)− µ (pL)] (1− F (pLT )) + [eµ (pH)− µ (pH)] (1− F (pHT ))

= [eµ (pH)− µ (pH)] (F (pLT )− F (pHT )) .

The optimal policing strategy eµ must meet the budget constraint, and so
eC = (1− eµH) (1− F (pLT )) pL + eµH (1− F (pHT )) pH .

Isolating eµH yields
eµH = eC − (1− F (pLT )) pL

(1− F (pHT )) pH − (1− F (pLT )) pL
.

The optimal policing strategy before the increase in resources must also meet the budget

constraint, and so

µH =
C − (1− F (pLT )) pL

(1− F (pHT )) pH − (1− F (pLT )) pL
.

Substituting into (5) we get

∆Crime =
³ eC − C

´· F (pLT )− F (pHT )

(1− F (pHT )) pH − (1− F (pLT )) pL

¸
(6)

= ∆C ·
·

(crime rate|pH)− (crime rate|pL)
(crime rate|pH) · pH − (crime rate|pL) · pL

¸
.

All the terms in the right-hand side brackets are observable when the resource level equals

C. Thus, the decrease in crime rate due to an increase in resources can be computed even

without observing any variation in the data in the level of police resources. In Section 3

this slope is calculated in the context of highway speeding interdiction.
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3 Empirical Application: Speeding Interdiction

In this section we apply our theoretical model of policing to study speeding interdiction

in Belgium. As discussed in section one, speeding interdiction is an important policy

question in its own right, because traffic accidents are a leading cause of death and

disability worldwide.20 Our goal in this section is to estimate the deterrence effect of

resources devoted to speeding deterrence by directly applying the theoretical framework

developed in section two.21 Then, in conjunction with value-of-life estimates taken from

the literature, we consider whether the marginal benefit, in terms of statistical lives saved,

warrants the marginal cost. Our estimates indicate that the current level of interdiction

is close to socially optimal.

3.1 The environment and the data

Our data come from the administrative records of the Belgian police department. In three

Belgian provinces (Eastern Flanders, Liege and Luxembourg), the police puts extensive

effort into publicizing announced radar controls, through different media that include

newspapers, radio, internet, local stores and restaurants.22 Our analysis samples cover

the province of Eastern Flanders, which has two major highways and one minor highway,

each of them connecting to the city of Gent.23 The two major highways are divided into

four sections: A14-North, A14-South, A10-East, and A10-West. In total there are 5

20In 1990, for example, traffic accidents represented the fourth leading cause of loss of DALYs (dis-

ability adjusted life years) in developed countries. Worldwide, accidents were the third cause of loss of

DALYs for ages 15-44. By comparison, war was only the seventh leading cause for those ages.
21The application of the theoretical model to speeding interdiction has the advantage that the issue

of incapacitation does not play a significant role. Speeders do not often receive prison sentences,

although they may temporarily get their license revoked. Crime rates can be reduced by deterring

potential criminals or by incapacitating them, and the models we examined in section two dealt only

with deterrence.
22The controls are announced, for example, on the website: http://www.federalepolitie.be.
23The East-West highway A10 connects Gent with Brussels to the East and with Bruges to the West

and the North-South highway A14 connects Gent with Antwerp and the Dutch border to the North,

and with the French border to the South. Both highways are of approximately equal length and cover

around 60-65km within the province of Eastern Flanders. The third highway, R4, is a short section of

highway connecting Gent with its port to the North.
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sections, each of which is of roughly equal length (30-40km). The province has two radar

control machines that can be placed along roads or highways to record the speed of

drivers passing along that road and to take photographs of cars that are speeding, which

are then issued tickets.24

An announcement merely says that a section of one highway (for example, A14-

North) will be subjected to increased monitoring in a time period (for example, between

the hours of 6am-12). The announcement does not specify the direction of the road

on which the machine is placed, nor of course its exact location. In fact, the police

generally hide the position the radar machine, so as to avoid the possibility that drivers

may slow down in the proximity of the machine and then pick up their speed again.25

The announced controls in the data are observed to rotate in a fairly mechanical fashion

across different sections of the roads and time (more on this later). On any given day,

the police either make no announcement or, when they announce, they keep one of the

machines in reserve to possibly monitor some other section in an unannounced way.

The data we use for the empirical analysis record the date, time of day, and location of

the machine and whether the radar control was announced as well as information directly

recorded by the machine, such as the number of vehicles passing by the machine, the

fraction of cars and trucks that were driving in excess of the speed limit (the limit differs

for cars and trucks) and the fraction of vehicles exceeding the speed limit by 15 km/h.26

24Radar control machines record speeds and take photographs of speeding vehicles. The license in-

formation obtained from the photo and information recorded on the speed is used to issue the tickets.

If the driver passes a radar machine while exceeding the speed limit by a certain threshold the proba-

bility is close to one of receiving a ticket. It is not equal to one, because, rarely, sun glare makes the

photo unreadable. The radar control machines are mobile and are typically moved to several locations

throughout the day.
25Only in rare cases (less than 1% of our data) is the radar machine not hidden. Even then, it does not

seem to be easily detectable by drivers: we verified that the probability of speeding does not decrease

in those cases. The same finding was independently reported to us by the police, based on experiments

they have done positioning a second radar machine several kilometers after the first radar.
26A major speeding violation is defined in the law as traveling at a speed of 10km/h or more over

the speed limit. In addition, the margin of error of the radar is ±3%, or 4km/h at the maximum speed

on highways, which is 120km/h. It is police discretion when to issue a ticket for major violations, and

currently, police considers a major violation traveling at a speed of 136km/hr or higher on highways.

During the time period covered by our data, tickets were not issued systematically for minor violations
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In what follows, we will use the following terminology. A monitoring event refers

to each of the possible time-space combinations in which the police sets out the radar.

There are a total of 5475 monitoring events: 3 time periods (6am-12, 12-6pm, and 6pm-

midnight) per day for 365 days, and 5 comparable, equidistant sections of road (2 on

A10, 2 on A14, and 1 on R4). Our choice of the time period is natural given the police

announces controls within those 6 hour time periods, and for comparability, we use the

same unit of account for unannounced controls. Of course, given random controls, the

actual duration of controls in any 6 hour period is shorter. We refer to a monitoring

interval as the actual duration of monitoring during any 6 hour monitoring event. In

the data there is variation in the monitoring intervals, with an average of 3 hours.

During announcement events, drivers know that monitoring can happen on the spec-

ified section during part of the 6 hour time period and in either of the two directions.

Within our model, this allows the driver to form beliefs about the likelihood of being

monitored. When no announcement is made, the driver knows that there can nonetheless

be monitoring and, within our model, forms a different belief about the probability with

which this happens.

Police objective and constraints. The police department explicitly states that its

goal in issuing tickets is to deter speeding. Maximizing the revenue from traffic tickets is

not an objective, and in fact, the police do not get to keep the revenue from the tickets

they write. Through conversations with the police, we learned that they face a binding

constraint on the total number of tickets. The primary cost of issuing a speeding ticket

is the administrative processing cost, which is estimated to be about US $0.50. The

police are given a total budget at the beginning of the year (allocated by the legislature),

so they know how many tickets can be issued during the year within this budget.27 The

(over the speed limit, but less than 136km/h) as a result of the radar data collected.
27This institutional arrangement raises at least two questions. 1. Why not let the police choose the

number of tickets and allow them to keep a fraction of the proceeds? The likely reason is that politicians

and the police want to avoid the appearance of a monetary incentive to write more tickets because the

public does not want police who are revenue maximizers. In fact, the statutory objective of the traffic

police is to minimize speeding, and not to maximize fine revenues. 2. Why not relax the constraint

on the number of tickets? Our calculation (Section 3.5 below) does not indicate a clear welfare reason

for wanting to relax the constraints, so it is not immediately clear that the politicians are imposing an

inefficiency by limiting the number of tickets.
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budget determines in large part the total number of ticketed speeders per year, that is

reported in Table 1a. To avoid issuing too many tickets, police do not make use of the

radar control machines every day. On days when no announcement is made, police may

or may not use the machines. On days with announcements, police make use of at least

one machine on the announced road and may also use the other machine on the same or

another road unannounced.

Following organizational reforms within the police, in 2002 and 2003 there was a sharp

increase in the number of tickets that the police were allowed to issue on highways.28 The

size of the budget constraint more than doubled, from 33,951 tickets in 2000 to 78,136

tickets in 2002. Based on conversation with the police, this reallocation of funds was

not triggered by any perceived change in the motorists’ propensity to speed, but rather

resulted from broader organizational changes.29 We will therefore treat this change in

the police budget as exogenous, and we will use this change as an additional way of

examining support for the model.

Monitoring Policy. The monitoring policy is determined at least one month in advance

of the actual radar control. For this reason, the officer who schedules the times and

locations of announced and unannounced controls does not react to short term changes

in circumstances, such as unpredictable weather conditions. The planned radar controls

appear to be always implemented. Table 1a shows the number and percentage of vehicles

subject to announced and unannounced radar control on the three major highways for

years 2000-2003. Table 1b shows the number of drivers issued speeding tickets. Table

1c reports the number of monitoring events on each road, where a monitoring event is

defined as the machine being placed on a road and recording information for some time

interval. Highway A14 has the highest level of monitoring, followed by A10 and then

the shorter highway, R4. Table B1 in the Appendix tabulates the number of announced

and unannounced monitoring events by month of year. There is no systematic pattern,

28Prior to the reforms, the state police monitored both highway and nonhighway roads. After the

reforms, there was a change in the jurisdiction so that state police monitored only highway roads and

local police monitored nonhighway roads, and the number of tickets that the state police could issue on

highways increased. We do not know what happened to the level of resources on non-highway roads,

as they are not recorded in our dataset, which comes from the state police department.
29This change occurred, in part, because resources previously used to monitor both highways and

some smaller roads were from 2002 on earmarked for highways only.
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except that monitoring is more frequent in the month of December. Table B2 tabulates

monitoring and announcement events by day of the week and shows that monitoring is

more frequent on weekend days in 2000 and 2001.

Driver’s avoidance. One potential concern in applying our model to the data is

whether drivers who hear the radar control announcements can select an alternate route

to avoid detection, which would mean that the speeding response of people who choose

to remain on the announced road could no longer be compared to the response of drivers

in the absence of the announcements. Because our data pertain only to major highways,

the potential problem of route selectivity is mitigated. If a motorist wants to avoid a

highway with announced radar controls, she will necessarily have to take country roads,

with relatively low speed limits (between 50 and 90 km/h) and with traffic lights. On

the basis of time cost, a driver should prefer to take the highway rather than a country

road, even with the announced controls. Aside from spatial avoidance, one might be

concerned about temporal avoidance: anticipating or postponing one’s travel to avoid

monitoring. However, the length of an announced monitoring interval is 6 hours. A

driver whose ideal driving time is in the middle of this interval would have to anticipate

or postpone his travel by 3 hours. Although there will be some drivers who can engage

in some avoidance with little change to their ideal driving schedule, that only applies to

those who are ideally driving at the very beginning or very end of the 6 hour interval. In

fact, we computed that if monitoring induces a driver to reduce his speed by 20 km/h,

then the time loss on the 40 km length of our section is about 3 minutes. According to

this calculation the concern about temporal avoidance is limited to a small fraction of

the monitored population.

3.2 Constructing the variables and fit to the model

The theoretical model presented in Section 2 assumed that individuals are heterogeneous

in their propensities to speed and that the heterogeneity is unobserved by the police.

In reality, the population driving on the road may vary in some observable as well as

unobservable ways. For example, police may be aware that speeding is more common

during certain times of the year or on weekends We denote the set of characteristics that

are observable to police by Z and assume that the theoretical model applies conditional
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on a set of observables Z. Table 2 reports the summary statistics of the variables used

in the analysis.

Estimation of the expected probability of monitoring. Recall that in the theory

pL and pH represent drivers’ perceived probabilities of being caught speeding on unan-

nounced (low) and on announced (high) monitoring days. On announcement days, police

monitor the announced road with probability one. A typical announcement specifies the

section of road being monitored and the length of time (for example, one hour in the

morning). The driver’s perceived probability of being caught speeding is typically less

than one, because police do not monitor the entire length of time of the announced con-

trol and they only monitor one of the two driving directions. We assume that drivers

form expectations about the probability of being subject to monitoring, and that they

may use characteristics of the day in forming their expectations. We therefore allow

pL(Z) and pH(Z) to depend on Z. For example, a driver may know that the police tend

to do more monitoring on weekends or on holidays.30

On days with announcements, monitoring is announced within three separate time in-

tervals, corresponding roughly to morning (6am-12pm), midday (12pm-6pm) and evening

(6pm-12am). We therefore divide each day of the year into three potential monitoring

intervals. For each year, we therefore have a total of 5475 monitoring events: 365 days,

3 time intervals per day, 5 sections of road (2 on A10 and A14 and 1 on R4). Let m be

an indicator for whether any monitoring takes place during an interval and let a indicate

whether the monitoring was announced. On announcement days, monitoring definitely

occurs, so Pr(m = 1|a = 1, Z) = 1. On days without announcements, drivers form a be-

lief about the expected probability of being monitored, potentially taking into account

factors such as the day of the week, the month of the year, whether the particular road

was recently subject to monitoring, whether there has been an announcement on another

road or whether it is a holiday. We estimate the predicted probability that a road is sub-

ject to monitoring (Pr(m = 1|a = 0, Z)) by a logistic regression, using as the estimation
30Because the police hide the location of the radar machine, a driver’s belief about the probability

of being monitored should be constant along a section of highway. In reality, not all motorists travel

along the entire section–some make shorter trips. We will show below that, for our purposes, there is

no loss in generality in treating shorter trips in the same way as longer trips.
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sample all potential monitoring events in which there was no announcement.31

On both announced and unannounced monitoring days, to arrive at a perceived

probability of being monitored, drivers have to form an expectation about the number of

hours that the monitoring will take place. Using data on the actual length of monitoring

during the event, we estimate a regression in which the dependent variable is numbers of

hours spent monitoring. The independent variables indicate the day of week, month of

year, holiday, and whether there were recent monitoring activities on that road. Using

these ingredients, the predicted probability on announcement days, pH(Z), is obtained

by

pH(Z) = 0.5 · E( H
TH
|m = 1, a = 1, Z),

where H represents the number of hours of monitoring and TH is the total time of the

announced monitoring event. The multiplication by 0.5 accounts for drivers’ uncertainty

about which direction of the road will be subject to the monitoring.

The corresponding probability on unannounced days, pL(Z), is

pL(Z) = 0.5 · Pr(m = 1|a = 0, Z)×E(
H

TH
|m = 1, a = 0, Z).

pL(Z) is typically much lower than pH(Z), because Pr(m = 1|a = 0, Z) is much less than
1.32

Appendix B, Tables B3 and B4, report the estimated regression coefficients for the

estimation of the predicted probability of monitoring on unannounced days and for the

predicted length of time spent monitoring. As can be seen in Table B3, there are few

systematic predictors of monitoring. It appears that the roads are more likely to be

monitored unannounced if there was some unannounced monitoring in the previous week.

31This estimation includes all potential monitoring events (365 days of the year times 3 intervals per

day). The data only record events in which monitoring took place, but we could infer the characteristics

of the events during which there was no monitoring (day of week, time of day, month of year, holiday,

whether there was recent monitoring).
32For days without announcements, we set TH = 16, because we do not observe in the data any

monitoring during nighttime. For roads A14 and A10, we make an additional adjustment (multiply by

0.5) to the estimated probabilities pL(Z) to take into account drivers’ uncertainty about which section

of road is subject to the monitoring. On announcement days, drivers learn the section of road from the

announcements but on unannounced days they do not know the section of road where monitoring will

take place. On the shorter road R4, there is only one section so no further adjustment is necessary.
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Table B4 shows that few of the conditioning variables have any predictive power in

explaining the length of time police spend monitoring. There is some indication that

the time spent monitoring differs across quarters of the year, but there is no systematic

pattern across all highways.

Finally, a note about the interpretation of p. In the theory, p represents the probability

that a motorist traveling along an entire sector is monitored, equation (1) must be

interpreted as a “per sector” equation. Thus, we take x to represent the “per sector”

benefit of speeding.33 A motorist who traveled only a fraction m of a sector would speed

if mx−mpT > 0, or equivalently, if x−pT > 0. Thus, the motorist’s decision problem is

invariant to the fraction of the sector travelled. This formulation allows us to aggregate

trips of different lengths, which is convenient because we do not observe the length of

each individual trip.

Computing µ. µ(pH) represents the fraction of monitoring effort devoted to high in-

tensity interdiction (announced monitoring in our model). It is calculated as follows: in

the denominator are all the 5475 possible monitoring events (365 days, 3 time blocks

per day, 5 sections of road); in the numerator are the number of announced monitoring

events (then µ(pL) = 1 − µ(pH)). The value of µ(pH) are reported in Table 1c. For

example, in 2000, µ(pH) = 66/5475 = 1.21%.

Crime rate. Our theory requires us to compute F (pLT ) and F (pHT ), the fractions of

speeders with and without a crackdown (see equation (6)), which we can obtain directly

from the data.

3.3 The randomness of crackdown

One of the premises of our theory is that crackdowns are random. That is, the the-

ory assumes that the difference in monitoring intensity between crackdowns and non-

crackdowns (pH and pL) reflects a non-convexity in F, rather than the police adapting

their monitoring intensity to several convex F ’s, reflecting shifts in the propensity to

speed that are observable to the police but unobservable to us. Figure 3 shows that the

distributions of the pH ’s and pL’s are bunched in proximity of their respective means

33We can think of x as reflecting a time benefit from speeding over some interval, and we would expect

value of time to differ across individuals.
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and the two distributions have literally no overlap (there are no monitoring events with

intensity between 0.05 and 0.15). The distribution of unobservables would have to be

very peculiar to generate this “bimodal” pattern of monitoring intensities. That is, we

would require the existence of a characteristic of drivers on a particular road segment

that observed by the police but unobserved in our data, which sharply and discontinu-

ously shifts their propensity to speed in a way that explains the bimodality. To the best

of our knowledge from conversations with the police, there is no such characteristic and

the bimodality is better explained by a non-connvexity in F.

There is, moreover, evidence that the police do not attempt to strategically condition

announcements on factors that might influence the propensity to speed. First, the police

commit to their announcement schedule at least 1 month in advance, and in so doing they

forgo the opportunity to fine-tune their announcements to factors that might influence

speeding (such as unseasonable weather, road conditions or traffic density). Second, the

announcement schedule is a fairly mechanical rotation, and in personal communication,

the police indicated that they were attempting to make the announcement schedule as

random as possible.

There is thus ample anecdotal evidence that in our context crackdowns are random.

In applications where such anecdotal evidence is absent (see Section 4.5 below for a

description of alternative applications of random crackdowns) our theory can nonetheless

offer a plausible foundation for empirical work provided one can establish support for

the randomness of crackdown.

To further explore this question, Table B6 reports the estimated coefficients from a

logistic regression of the probability of an announcement. The independent variables are

characteristics of the day, such as whether it is a holiday and the quarter of the year,

and information on recent monitoring events. We also include as a potential predictor

variable the percentage speeding on the same road on an unannounced day, as a proxy

for the underlying speeding propensities of motorists on that road.34 Almost all the

variables, including the speeding measure, do not predict the announcements, which is

generally supportive of the announcements being random.35

34An anonymous referee pointed out this strategy for testing the randomness of crackdown. We are

grateful for this suggestion.
35We expect the year effects to be statistically significant, given that the operating budgets are annual
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Even if there seems to be no clear evidence of targeted announcements our estimation

strategy allows for potential systematic variation in monitoring behavior based on a set

of observables Z that police and drivers might plausibly use.

3.4 Examining support for the model

Ideally, we would like to be able to estimate the empirical counterpart of the distribution

of propensities to speed, as depicted in Figure 1, and look for a concave part in order to

justify a crackdown. However, if the theory is correct, then we should observe only two

points on the function F (pLT ) and F (pHT ), and there will not be any variation in the

data to trace out the shape of the function. In the absence of a direct test on the shape

of the distribution of propensities to speed, we turn to our model, and in particular to

Proposition 3 for other kinds of predictions that can be used to examine the empirical

support for the model.36

Implication #1: Partitioning into Two Groups One implication of the theory

(Proposition 3 part (a)) is that the optimal policing scheme partitions the population

in at most two groups. The optimal monitoring strategy involves either monitoring

everyone at the same rate or dividing the population into at most two groups that are

monitored at different intensities. The fact that police announce crackdowns on some

roads on some days naturally gives rise to three different groups: (i) highway sectors with

crackdowns; (ii) sectors without crackdowns on days in which crackdowns are announced

on other sectors, and (iii) sectors on non-announcement days.

[ Figure 3 ]

and the number of announcements increases over time.
36In order to estimate the empirical counterpart of the distribution of propensities to speed, one

might look for variation in the day-to-day monitoring probabilities (the x-axis in Figure 1) that is (a)

exogenous to the propensity to speed, and (b) anticipated by drivers. Unfortunately, this is difficult.

Weather and traffic density, for example, are sources of variation, but they are likely to affect the

drivers’ underlying propensity to speed, thus shifting the curve in Figure 1. Thus, these are not sources

of exogenous variation. In fact, we account for these factors in the empirical analysis by introducing

them as conditioning variables. Other, more subtle sources of variation in the observed monitoring

probabilities are unlikely to be anticipated by drivers.
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Figure 3 plots the histogram of the probabilities with which police monitors drivers

(the plot refers to road A14; the histograms for A10 and R4 are similar and available upon

request). The columns of the figures refer to year 2000, 2001 and 2002, and the mean

of the probabilities in each years is shown in the x-axis label. For each year, the figure

in the first row displays the distribution of the probabilities if there was an announced

control (i.e. of pH(Z)). The mean of this distribution is around 25% because, during

an announced control, the police actually has the machine out about 3 hours within an

announced 6 hour time window, on 1 of 2 possible driving directions, so 3
6
× 1

2
= 0.25.

The middle row depicts the distribution of probabilities if there was no announcement

on that road (A10), but there was an announcement simultaneously on another road.

The bottom figure corresponds to the case without announcements on that road (A10)

or on any other road. Groups (ii) and (iii) are monitored with similar intensities, and

with sharply lower intensity than group (i), which is consistent with the prediction of the

theoretical model. However, a statistical test of equality of the estimated probabilities

in groups (ii) and (iii) rejects the hypothesis at 5% significance level. The probability

of being monitored on a given road is slightly less when there is announced monitoring

on another road.

Implication #2: Effect of an Exogenous Increase in Resources on Monitoring

Probabilities The theory (Proposition 3 part (b)) predicts that with an increase in the

number of tickets there will be an increase in announced controls (µH increases, with a

corresponding decrease in µL) but no change in the monitoring probabilities. In 2002

and 2003, there were large increases in police resources that were arguably exogenous

with respect to the speeding propensities of the drivers. The predictions of the model

that the probabilities remain stable and that announcements occur more frequently seem

to be borne out in the figures. Table 1c shows a very significant increase in µH in 2002,

to 6.15%, more than five-fold compared to 2000. A simple comparison of the histograms

in columns 1, 2, and 3 in Figure 3 reveals that as the number of tickets issued nearly

doubled in 2002, the number of vehicles subject to monitoring increased dramatically but

the monitoring probabilities remained roughly the same. The stability in the probability

of monitoring across years can also be seen in Table B3, where the estimated year effects

are generally not significant determinants of the probability of monitoring, as well as in

Table B5, which shows the average predicted probability of monitoring for each of the
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years.

Implication #3: More tickets during crackdowns The model predicts that the

expected number of successful interdictions per capita is larger in the crackdown group

than in the non-crackdown group (Proposition 3 (c)). The expected number of successful

interdictions per capita equals the probability that there is monitoring multiplied by

the fraction of motorists who speed. On days with announcements, the probability

of monitoring increases substantially. If the fraction speeding went down enough to

offset the increased probability of monitoring, then it is conceivable that the number of

successful interdictions could go down. The data are, however, consistent with the model

and the number of successful interdictions per capita increases with announcements. For

example, on highway A10 the expected number of tickets per capita on announcement

days is 0.505% whereas on unannounced days it is 0.026%.37 Likewise on A14 (1.010%

and 0.083% respectively) and R4 (1.041% and 0.038%). This test of the model is

arguably weak, because the only way the test could fail is if the announcements had a

great deterrence effect and motorists were about ten times less likely to speed during

announced periods.

Overall, we conclude that the data broadly support the key predictions of Proposition

3. We next use the model to infer the deterrence effect of resources devoted to speeding

interdiction.

3.5 The deterrence effect of announced controls

The main goal of our empirical analysis is to estimate the deterrence effect of a change

in the number of tickets issued by the police. The simplest approach would be to mea-

sure deterrence by the change in total crime before and after a reform that exogenously

changes the level of resources. We do not, however, have total crime in our data, which

only records information during monitoring events, so this simple approach is not fea-

sible.38 Our model provides an alternative way of estimating the deterrence effect that

37This calculation is based on estimates of pL and pH and of the percentage speeding with and without

announcements that are estimated by the method described in the next section and are reported in Table

4 (the first column and the column labeled (3)).
38Following this simple approach would require us to know total crime, i.e. the number of vehicles on

the road and the speeding rates on all days and times of day when there was no monitoring, which is
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only requires knowing the speeding rates during crackdown and non-crackdown periods.

The theoretical model implied that relaxing the budget constraint should lead to

an increase in the number of announced controls. Drivers who take to the roads on

announcement days are subject to a higher probability of being caught speeding and are

therefore viewed as the group subject to a crackdown. Here, the criteria by which the

crackdown group is distinguished are time and day of traveling on the road.39 To estimate

the deterrence effect, we compare the speeding response on days with announcements

(days with pH) to the speeding response on no announcement days (with pL). The

maintained assumption is that announcements (crackdowns) are random conditional on

the observed covariates. The theoretical model of section two assumed that monitoring

intensity is the only observable factor affecting speeding decisions, but in reality other

likely important factors are weather conditions, traffic density, day of the week, month of

the year, time of the day and whether it is a holiday. We therefore include those additional

variables as potential determinants of speeding decisions. To examine sensitivity to the

set of included covariates (Z), we report results with and without conditioning on the

additional covariates.

We estimate a discrete choice logistic model for drivers’ decisions to speed, where the

speeding decision is assumed to depend on the probability of monitoring and on the other

covariates. Table 3 presents the estimated coefficients for three different specifications. In

specification (1) the speeding decision is assumed to be a function solely of the monitoring

probability. Specification (2) adds the conditioning variables that may also be relevant to

the speeding decision: indicators for different levels of traffic density, an indicator for poor

something we do not know. In the absence of this information, we could impute the number of vehicle

and the speeding rates on the days with no monitoring. A difficulty with this imputation is that there

are some observables that we do not know for days when there was no monitoring, such as traffic density

and weather. With our model, we obtain the same objective, i.e. a way to get from the two crime rates

to the deterrence effect. In addition to the fact that we do not need to know the total level of speeding

vehicles, the model also allows us to examine policy changes that are not observed, i.e. any change in

tickets different from the increase of 32,872 observed in 2002-2003.
39The observed policy of rotating announcements across space and time is not the unique optimal

policy in our theoretical model. Alternatively the police could focus all resources on one particular road

(for example always monitor one section of A10 intensely and always monitor all other sections with

low intensity). We believe that a plausible reason (outside our model) for rotating announcements is to

allocate the burden of interdiction “fairly”.
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visibility on the road, an indicator for morning and evening rush hour weekday traffic, an

indicator for whether the day is a holiday, and fixed effects for days of week, months of

year, and year. Specification (3) includes the same set of conditioning variables, but the

speeding decision is now assumed to depend only on whether there is an announcement,

without taking into account the information contained in the length of the monitoring

event. This would be the appropriate specification if driver’s expectations about the

probability of being monitored only depend on whether an announcement was made and

not on other day-specific factors.40

As seen in Table 3, speeding decreases during announcement periods and is a de-

creasing function of the probability of monitoring. This result is robust to the inclusion

of conditioning variables, although a comparison of the estimated coefficients across

specifications shows that the estimated deterrence effect is smaller in the specifications

that include the covariates. Controlling for covariates especially affects the estimated

coefficient associated with the probability of monitoring on highway R4. As expected,

individuals are more likely to speed when traffic density is lower. Speeding also tends to

be higher during weekday rush hour times, on holidays, and on Sundays.

Using the estimated coefficients from Table 3, we estimate for each person the prob-

ability of speeding, evaluated at pH and pL values that are set at the average over all

the observed values. The average pH and pL values for each road are reported in the

first column of Table 4. Column (1) of Table 4 reports the average predicted decrease in

speeding on each road that can be attributed to the announcements for the same three

model specifications that were shown in Table 3.41 As noted above, the estimated deter-

rence effects are smaller when additional covariates are included in the specification. We

focus on the coefficients that include the covariates (reported in columns (2) and (3)),

because they are likely to be important determinants of speeding decisions. On highway

A10, the estimated coefficients imply that announcements reduce the fraction of drivers

speeding on average by 5.0-15.5%. For highway A14, estimates range from 8.0%-18.7%,

40The results in the third column are robust to any potential misspecification in the model for the

probability of monitoring.
41That is, we obtain a predicted decrease in speeding for each driver and then take the average over all

drivers. The predicted decrease in driver-specific in the specifications where pL(Z) and pH(Z) depend

on covariates Z, which are driver-specific (such as day and month of travel).
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and, for highway R4, from 1.9%-8.6%.

These estimates can now be used to compute the deterrence effect of a hypothetical

increase in police resources in the form of an increase in the number of tickets issued.

The effect of an increase of 10, 000 tickets is reported in Table 4 for each of the highways.

It is easiest to understand the computation in the context of a specific example. Consider

model specification (1) for Highway A10. The expected number of tickets written per

car on an unannounced day is given by the probability that a car speeds (0.031 from the

first row, labeled (a)) times the probability that it is monitored (pL = 0.0084):

1 ∗ (.031) ∗ (.0084) = 2.604× 10−4.

On an announcement day, the probability that a car speeds is 6.5% lower (from the third

row), and the probability that it is monitored is equal to 20.07%. The expected number

of tickets written per car is therefore:

1 ∗ (.031)(1− 0.065) ∗ (.2007) = 5.8203× 10−3.

Therefore, an increase in the budget of 10, 000 tickets allows subjecting to announcement

10, 000

5.8203× 10−3−2.604× 10−4 = 1.7986× 10
6

additional cars. Without an announcement, 3.1% would speed. Of these, 6.5% are

deterred from speeding by the announcement. Thus,

1.7986× 106 ∗ 0.031 ∗ 0.065 = 3, 597

drivers will be deterred as a result of writing 10, 000 more tickets which will be issued

on additional announcement days. The same calculation is performed to obtain “Effect

of additional 10, 000 tickets” in Table 4. Depending on the model specification, the

reduction in the number of speeders ranges from 2,743 to 9,603 on highway A10, from

3,849 to 10,291 on highway A14, and from 763 to 3,817 on R4.

There is a large literature documenting the effect of speeding on accidents, injuries and

traffic deaths.42 We can use estimates from the literature of the impact of speeding on

42For the US, the National Highway and Transportation Safety Authority (NHTSA) provides estimates

of speed-related crashes.

33



fatalities along with our estimates of how additional resources reduce speeding to evaluate

whether the police optimally trade-off the costs and benefits of speeding interdiction. We

take an average of the estimated deterrence effects of 10,000 tickets, found in Table 4 to

be about 4,000 speeders. Assuming that each deterred motorists travels the length of

a sector (about 40 km), 160,000 km are travelled by deterred motorists. The expected

number of deaths on 480,000 travelled kilometers is around 1.3
100000000

·160000 = 0.00208.43
In our data, deterred motorists reduce their speed by about 8 km/h.44 Assuming the

probability of injury and death increases by 5% per km/hour,45 the additional interdiction

is expected to reduce the number of deaths by 40%, or by 0.00208 ∗ 0.4 = 8.32× 10−4.
On the cost side, writing 10,000 more tickets costs $5,000 in administrative costs

and, we assume, wastes about 1 minute per deterred driver, or a total of about 67 hours.

Given a wage of $10/h (the opportunity cost of time), the total costs of interdiction is

$5, 000 + 670.

If the police were resolving optimally the trade-off between marginal cost of inter-

diction and marginal benefits, in terms of statistical lives saved, then the implied value

of a statistical life is 5670
8.32×10−4 = 6.8 million dollars. This value is within the range

of commonly used estimates of the value of a statistical life, indicating that the use of

resources in policing may be close to efficient.46

43We impute the expected number of deaths at 1.3 per 100 million km travelled (See DiGuiseppi et al

(1998).) For comparison, in the US, where the speed limit is lower, the expected number of deaths was

1.51 per 100 million of highway miles travelled in 2002 (see Motor Vehicle Traffic Crash Fatality Counts

and Injury Estimates for 2003 ).
44Average speeds among speeders are 142 and 144 respectively for A10 and A14. Assuming that

deterred motorists travel at the maximal non-ticketed speed (135km/h), deterred motorists reduce their

speed by 7 - 9km/hr.
45This estimate is given in Finch et al. (1994). This estimate was used by the Belgian police in an

internal memorandum to evaluate the impact of speeding on casualties.
46For example, Murphy and Topel (2003) report a range of $3 million to $7 million. The Environmental

Protection Agency in the U.S. uses an estimate of 4.5 million. (Murphy and Topel, 2003). If we do

the same calculation using an estimated effect of 12,000 vehicles deterred per 10,000 tickets, we get an

implied value of a statistical life of 2.86 million dollars.
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4 Discussion and Some Extensions

This section compares our theory to some other existing theories of crackdowns. It also

extends the model to capture an environment in which crime is not a binary decision

but rather a continuous choice and the utility of the citizens is not necessarily linear

(to allow for risk aversion). The previously established theoretical results carry over to

these more general settings. Finally, we also consider some variants of the base model

and derive analogous results for these variants.

4.1 Alternative theories of deterrence

4.1.1 Rational Theories

As noted in the introduction, Lazear (2006) independently analyzes an auditing model

which is close to the one analyzed here, and so deserves careful discussion. The main

focus in Lazear’s paper is on academic testing as an incentive for pupils to study a subject.

The test can only include a given number of questions and so it only has a limited power

to incent. This power can be spread thinly across the entire subject matter or focused on

specific areas. Unlike us, Lazear (2006) does not investigate the optimal testing strategy.

Instead, that work focuses on the following specific strategy: the students are told that

a fraction (1− q) of the subject matter will not be tested at all and that the test will

only cover the remaining q of the material. Note that q < 1 would correspond, in our

language, to a special type of crackdown with pL = 0.

An auditing policy of this type is, in general, suboptimal because it constrains pL to

be zero. The effects of this restriction can be seen in Figure 4 where for a given P the

optimal crackdown intensities (marked by pL and pH) are compared to the constrained

crackdown intensities (indicated by 0 and lH). As expected, under the optimal crackdown
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the crime rate (S) is lower than under the restricted crackdown (Sl).

 Fraction  
not 
learning  

p 
(testing 

intensity) 
P 

1-F(pT) 

pL pH lH 

S 
S l 

0 

Lazear’s  
crackdown

Figure 4. Optimal versus Lazear’s Crackdown.

Observe that restricting the no-crackdown probability to zero also distorts the crack-

down probability (lH) relative to the optimal one. Indeed, it is easy to see that, regardless

of the shape of F , it must be lH ≤ pH . We may also note that in Lazear’s treatment,

crackdowns are inefficiently rare, in the sense that crackdowns are adopted for fewer

values of P than is optimal (again, this follows by inspection of Figure 3). For values

of P when crackdowns arise in Lazear’s framework, the estimated deterrence effect as

computed using Lazear’s crackdowns exceeds the deterrence effect in the optimal scheme

(in Figure 3, the slope of the “Lazear crackdown” is steeper than the slope of the op-

timal crackdown). Finally, under the optimal policing scheme the deterrence effect of

additional resources is subject to the law of diminishing returns: as P increases, its mar-

ginal effect on crime never increases (the deterrence effect is given by the slope of the

lower envelope of the function 1−F (pT )). In Lazear’s treatment, the law of diminishing
returns does not hold: deterrence is generally non-monotonic in P .

There seem to be few practical reasons to restrict attention to a scheme where pL = 0.

The Belgian police, for example, spend considerable resources on non-crackdown inter-

diction. In the context of academic testing, the optimal scheme could readily be imple-
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mented by telling students that a fraction (1− q) of the subject matter is less likely to be

tested, but not necessarily out of bounds. One might then split the test into two parts,

each covering fractions q and (1− q) of the subject matter, and devote an appropriate

number of questions to each part. The optimal auditing scheme is then implemented by

setting q = µH and letting pH determine what number of questions are allocated to the

high-intensity testing. Because lH ≤ pH , in Lazear’s scheme even those subjects that are

stressed for the test will be stressed insufficiently relative to the optimal scheme.

Despite the difference in approach, it is reassuring that in one respect the two analyses

give the same prediction: as the budget constraint is relaxed, both approaches imply that

the fraction q of the material subjected to high-intensity testing increases, and that the

per-unit-of-material intensity of testing remains unchanged (even though the latter is

suboptimal in Lazear, 2006).

4.1.2 Boundedly Rational Theories

The model analyzed in this paper is a model of perfectly rational risk assessment, in

which motorists form a Bayesian update of the probability of being monitored based on

the available information. In this environment, we have shown that crackdowns may be

part of the deterrence policy chosen by the police.

Alternatives to our theory exist that can rationalize crackdowns. These theories are

typically based on some form of non-standard (at least from an economist’s viewpoint)

rationality. For example, an alternative model of the effect of crackdowns is the following.

Suppose that absent a crackdown, the probability of monitoring is so small as to be

ignored by the driver. Crackdowns raise the speeder’s probability of detection to the point

where it is not negligible, and in the process the motorist becomes alert to the detection

risk which was previously unforeseen. If this increased alertness persists even when a

crackdown is not in force, crackdowns help reduce speeding. In our speeding application,

this theory of deterrence would suggest that motorists on announcement days would be

reminded of the possibility of being monitored and therefore slow down. According to

this theory, speeding should also go down even on roads that are not monitored due to

the increased alertness from announcements on other roads. This implication, however,

is refuted by our data, because we find that the fraction of speeders on non-monitored
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roads does not decrease during monitoring days (see Table A4).

Criminologists have justified crackdowns using an alternative theory of deterrence,

based on subjective risk assessment. This theory, developed in Ross (1984) and Sher-

man (1990), highlights the distinction between risk (which is accurately perceived by

motorists) and uncertainty (which is not accurately perceived). The idea is that crack-

downs, because they are fleeting, generate doubt in the mind of the motorist about the

interdiction intensity at any particular time, thus boosting the uncertainty component

involved in the decision to speed. According to this theory, using crackdowns may mag-

nify the deterrence effect obtained from a given amount of resources.47 According to

this theory, an effective policing strategy would leave motorists in as much in doubt as

possible as to the location and timing of the crackdowns, in order to maximize their

uncertainty. This implication appears to contrast with the actual policy of liberal in-

formation dissemination observed in our application. Note that, consistent with the

observed pattern of information dissemination, the optimal policy in our model is to

inform motorists about the crackdowns.48

4.2 Crackdowns persist if citizens’ utility function is nonlinear

The model developed in this paper assumes that the utility function was linear in the

benefit, x, from committing a crime. The linearity assumption can be relaxed. Suppose

citizens have a utility function u that is increasing in x. Then they will commit a crime

iff

(1− p)u (x) + pu (x− T ) > u (0) .

Consider the set of values of x such that the inequality is satisfied, and denote by H (p)

the measure of this set. The function H (p) represents the crime rate. Note that since u

is increasing, the left hand side is increasing in x and, also, u (x) > u (x− T ) whereby

47Sherman (1990) goes further and argues that the beneficial effect of crackdowns on the motorists’

uncertainty about interdiction actually persists even after a crackdown period is over. He call this effect

“residual deterrence,” and argues that residual deterrence is an important component in the effectiveness

of the crackdowns.
48Our model predicts the effectiveness of the crackdown is directly proportional to the fraction of

motorists who are aware of it. If no motorist were aware of the crackdown, all motorists would expect

the average amount of interdiction and there would be no effect of crackdowns on speeding.
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the left hand side is decreasing in p. Therefore, the set of values of x such that the

inequality is satisfied decreases as p increases. This means that H (p) is decreasing in p.

The analysis of Sections 2 and 2.3 can then be carried out replacing F with H.

4.3 Crackdowns persist if the crime decision is continuous

Suppose that instead of a binary problem (committing a crime or not), each citizen solves

a more complicated problem involving not only whether to commit a crime, but also the

degree to which to commit it. For example, a motorist may choose whether to speed

and how much to speed. Suppose that the penalty for driving at s miles per hour above

the speed limit is an non-decreasing function T (s) (which could be equal to zero below

the speed limit) and that the agent’s utility from exceeding the speed limit by s is an

increasing function x (s). We allow different individuals to have different functions x (s).

Given a certain level of interdiction p, an agent with a given function x (·) solves

max
s

x (s)− pT (s) .

Denote with s∗ (p) the maximizer of this problem. Denote by eF (s|p) the fraction of
individuals who choose to travel at or below speed s for given p. The quantity eF (s|p)
will depend on the distribution of the functions x (·) that is present in the population.
It is easy to see, however, that the optimal speed s∗ (p) is decreasing (or at least not

increasing) in p : s0(p) = T 0/ (x00 − pT 00) is negative by the concavity of x − pT at the

maximum. This means that any motorist, regardless of his or her x (·) , will decrease
his or her optimal speed as the probability of being monitored increases. The functioneF (s|p) is therefore increasing in p.

If police cared not only about the fraction of people who exceed the speed limit, but

also about their speeding levels, the police’s objective function would be represented by

the function

D (p) ≡
Z

K (s) d eF (s|p) ,
whereK (s) is some non-decreasing function. The functionK (s) represents the disutility

that the police receives from having one motorist travel at speed s. Because eF (s|p) is
increasing in p, the function D (p) is decreasing in p. Now, rewrite problem (2) replacing

1 − F (p) with D (p). This yields a mathematical formulation of the problem in which
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motorists can choose the amount of speeding and police care not only about the fraction

of speeders but also about their speed. From a formal viewpoint this new formulation

is similar to the original problem. Therefore, all the qualitative features of the solution

to the original problem carry over, including the optimality of crackdowns when the

function D (p) exhibits non-convexities.

4.4 Size of the penalty

In considering the agency relationship between the principal and the police we have taken

the size of the penalty (T in the formal model) to be exogenous. In actuality, the size

of the penalty is an object of choice, sometimes on the part of the principal.49 It should

be pointed out that our theory remains meaningful irrespective of how or by whom the

penalty is chosen, as long as deterrence is not perfect. Thus, the theory does not require

us to explain how the penalty is determined.

One might ask, however, why would deterrence not be perfect. Or, a more meaningful

question in our applied setting, why would penalties not always be set at their maximal

value so that everyone is deterred with a minimum deterrence cost? In our application,

for example, we might ask why speeders are not sent to jail? This point was raised by

Becker (1968) who noted that, when interdiction is costly, increasing the size of the fine

allows the same level of deterrence to be implemented while saving on interdiction costs.

Regardless of the objective to be implemented, then, penalties should always be set at

their maximal value.

Why are observed penalties not always maximal? The literature has identified several

arguments; here we mention those that are more directly applicable to our analysis, and

refer to Polinsky and Shavell (2000) for an excellent overview of the others. First is

the need to generate marginal deterrence: if all violations were punished with the same

(maximal) intensity, there would be no incentive to choose a lesser over a larger (and more

harmful) violation (see Stigler 1970, and more recently Shavell, 1992). If enforcement

cannot be tailored perfectly to the magnitude of the violation, lower penalties will need

to be applied to less serious crimes. A second reason is that, when a harsh penalty is

imposed, those who enforce the law must be monitored lest they abuse their position,

49In our speeding application the fines are chosen by the Belgian parliament.
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and opportunities for judicial appeal must be provided to redress enforcement mistakes.50

Taking into account these ancillary (but very important) costs may explain why penalties

are seldom set at their maximal possible value. A third consideration is risk aversion

(see Polinsky and Shavell 1979): whenever it is socially optimal for some individuals to

violate the law (for example, speeding may be socially optimal in some circumstances),

increasing the penalty and decreasing the risk of apprehension increases the risk faced

by these “optimal violators,” and thus reduces social welfare. This consideration places

limits on the size of the penalty chosen by the social planner. While we do not explicitly

model these considerations, they could easily be added to the model without affecting

the fundamental force that generates crackdowns. For example, if the principal cannot

observe the crime rate, the police must be given incentives based on some other measure

of performance.

4.5 Other Applications

The ideas developed in this paper have potential applications beyond speeding. In this

section, we consider some of them.

4.5.1 Tax Evasion and Drug Interdiction

Suppose the principal cares about reducing the crime of drug production, but the prin-

cipal can only observe the drugs that make it to the market without being intercepted.

In that case, police performance will have to be evaluated based on undetected crime.

Sometimes, minimization of undetected crime may even arise as a first-best option. For

example, a principal may find it optimal to give incentives to the police based on unde-

tected crime when detection removes the social cost of the crime. This is the case for

example with illegal firearms, where if a firearm is intercepted it is taken off the street.

The same is true for tax evasion. The objective of the tax authority is to minimize

undetected crime.

When a group is monitored with intensity p, the fraction of crime in the group that

goes undetected is (1− p) (1− F (pT )). Given a policing strategy µ, undetected crime

50So, for example, the degree of judicial protection is much larger (and the system therefore much

more expensive) in death penalty cases than for traffic violations.
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is given by Z p

0

µ (p) (1− p) (1− F (pT )) dp. (7)

The police chooses a policing strategy µ to minimize expression (7) subject to the budget

constraint (3).

This programming problem is very similar to the one studied in Section 2.1; there as

well as here, the objective function is decreasing in p. This was the only property of the

objective function that was used in Section 2.1, so it is immediate that Propositions 1

and 2 continue to hold in this setting.

Whether crackdowns are optimal depends, as before, on the convexity of the objective

function. In the present case, it is the convexity of undetected crime that matters. If

undetected crime is convex in p then crackdowns are never optimal (see Remark 1.) It is

simple to verify that undetected crime is “more convex” than crime, in the sense that if

(1− F (pT )) is convex then (1− p) (1− F (pT )) is also convex. Therefore, if F is such

that police minimizing overall crime rates never finds it optimal to engage in crackdowns,

then crackdowns are also not optimal if the objective is to minimize undetected crime.

4.5.2 Internal Compliance

Most large corporations employ internal compliance officers who monitor and audit the

processes of the corporation’s internal departments. Much of this monitoring is directed

at ensuring that the firms is in compliance with legal regulations. Some of this monitoring

takes place on a continuous basis, such as oversight of contracts, of insurance policies,

etc. But some of this monitoring is designed to be carried out episodically, such as when

a review is made of a particular department within a company. The combined effect of

these monitoring activities is arguably to create a crackdown policy, where a mild level

of monitoring is sometimes augmented during a crackdown.

There are arguably two related reasons for the crackdowns. One is that the decision

makers in the department are only deterred by a very high monitoring intensity, higher

than can be provided on a continuous basis. Then, just as in the model of Section 2.1,

crackdowns can help maximize compliance. A second reason why crackdowns are em-

ployed is a technological nonlinearity in the scope of the monitoring. When departments’
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activities are audited, it is on average easier to evaluate compliance if the activity of a

few is monitored thoroughly, rather monitoring all but in little depth. We can imagine,

then, that the probability of detection is nonlinear (and convex) in the scope of the

monitoring. At the extreme, it might be impossible to detect wrongdoing unless all of

a given department’s activity are scrutinized. This technological nonlinearity is related,

though not exactly identical, to the model studied in Section 2.1.

4.5.3 Collecting TV-license Fees in Sweden

Under Swedish law everyone who owns a television set is required to pay the licence fee.

The fee is collected by Radiotjänst, a private corporation that administers the TV-fee

as well as checks out that people are actually paying the fee. The controls are carried

out throughout the year. In addition, there are special fee-controls. These are stricter

controls in 3-5 predetermined areas every year. According to the law on the TV license

fee, everyone should be informed of their area being subjected to special fee-control.

Among other things, this is done by postcards being sent out to all households in the

area. Information is also given in advance through the media and radio, and through the

TV-detecting films that are shown on TV. The special fee-controls can be interpreted as

crackdown.

Consumers differ according to their taste for TV net of the cost of purchasing it,

captured by x, and their psychological cost of being fined, captured by h. The two para-

meters are realizations from a joint probability distribution (so we allow for correlation

between X and H). For all consumers, the scalar d represents the monetary cost of the

fee, and the value of not having a TV is zero.

In our setup, the socially optimal outcome is for all consumers with x > 0 to receive

the TV. However, consumers with x < min {ph, d} will opt not to get a TV. Thus,
interdiction (increasing p) entails inefficiencies due to exclusion of some consumers. On

the other hand, interdiction reduces cheating and thus increases the receipts from the

fee. We want the regulated firm who collects the fine to set interdiction so as to balance

fee receipts with the inefficiencies generated by interdiction.

Given an interdiction level p, the fraction of consumers who actually pay the fee are

those who prefer paying the fee to not having a TV at all, and who are also more afraid
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to cheat than they dislike paying the fine. The fraction

ϕ = Pr (X > d)

prefers paying the fee to not having a TV at all. So the fraction of fee-paying consumers

is

ϕ · Pr (pH > d|X > d)

Let us now turn to the social cost of interdiction. While we can be sure that a fraction

ϕ of consumers will get a TV–if necessary, by paying the fee–the remaining (1− ϕ)

may actually choose not to get a TV. Those consumers will chose not to get a TV when

their payoff from cheating is smaller than zero. So the fraction of consumers who do not

get a TV is given by

(1− ϕ) · Pr (X − pH < 0|X < d) .

This fraction is a measure of the social loss due to interdiction (which is increasing in p).

Denote

FH (y) = Pr (H ≤ y |X > d)

FX/H (y) = Pr

µ
X

H
≤ y|X < d

¶
.

Then the objective function is

max
µ

Z p̄

0

·
d · ϕ ·

µ
1− FH

µ
d

p

¶¶
− α · (1− ϕ) · FH/X (p)

¸
µ (p) dp.

The first addend in brackets accounts for the receipts from the fee (increasing in p). The

(−α) coefficient represents the weight assigned to the social loss. If the term in bracket

is convex as a function of p then we have the possibility that crackdowns, such as are

observed in Sweden, are optimal.

5 Conclusions

This paper introduced and analyzed a model of police interdiction. Within this model,

we have fully characterized the optimal interdiction strategy. We have shown that even

if all citizens look identical to the police, it may be rational for the police to divide
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the population into two (but no more) groups and monitor the groups at different in-

tensities. For this division to be effective in curtailing crime, it is important that the

group subjected to the crackdown be made aware when they are being monitored at

the higher rate. This explains why police would announce when and where crackdowns

will occur. Our analysis provided a rational choice explanation for pre-announced police

crackdowns, which are regarded in the criminology literature as exploiting a non-rational

perception of risk on the part of the citizens.

The model provides a behavioral setting in which monitoring intensities could differ

across locations or groups in a way that is totally random, thus potentially providing a

rigorous basis for using the observed variations in monitoring intensities in an observa-

tional data to estimate the deterrence effect without having to worry about endogeneity.

We applied our theoretical model to study speeding interdiction in Belgium. The

data provide support for several implications of the model. Among these are, first, that

the announcement strategy of the police indeed amounts to dividing the population into

exactly two groups, and, second, that when police resources are increased, the frequency

of crackdowns increases but the probability of being policed during a crackdown does

not change. We used the model to estimate the deterrence effect of additional resources

devoted to speeding interdiction in the form of 10,000 additional speeding tickets. Our

calculations suggest that the marginal benefit, in terms of statistical lives saved, is close

to the marginal cost of deterrence (it is exactly equal if we take the value of a statistical

life to be 6.85 million dollars). Thus, the current level of speeding interdiction is arguably

in line with socially optimal use of resources.

The standard theoretical approach we adopted–set up a stylized model and derive

the optimal policy–turns out to be remarkably successful in explaining the policing

behavior of a police department. What is remarkable is that the optimal interdiction

strategy in our model has some features (crackdowns) which are unlikely to be put in

place by chance, and which are found in the Belgian data. Thus, the rational theory of

optimal interdiction can have not only normative implications, but even positive corre-

lates in practical police work. If apparently abstract models can capture the behavior of

complex real-world institutions such as police departments, then this is good news for

the vast theoretical literature dealing with optimal enforcement.
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Table 1a 
Number and Percentage of Vehicles Subject to 

Announced or Unannounced Monitoring by Year§ 

 2000 2001 2002 2003 (first 
half of year) 

     
Announced 266,240 

(39.5%) 
394,540 
(55.2%) 

1,746,340 
(76.8%) 

1,777,977 
(58.0%) 

Unannounced 406,941 
(60.5%)  

319,650 
(44.8%)  

526,422 
(23.2%)  

1,139,428 
(42.0%)  

Total 673,181 714,190 2,272,762 2,917,405 
§Based on daily observations on the number of vehicles, as recorded by the radar control machines. 

 
 

Table 1b 
Number of Ticketed Speeders by Year and Announced or Unannounced Monitoring 

(percentage of total ticketed each year shown in parentheses)§ 
  2000 2001 2002 2003 (first 

half of year) 
Announced Number ticketed 12677 20039 55804 32079 
  (37.3%) (44.3%) (71.4%) (69.4%) 
Unannounced Number ticketed 21274 25225 22332 14140 
  (62.7%) (55.7%) (28.6%) (30.6%) 

§ Based on daily observations on vehicles passing by the radar control machines and on their speeding 
status, as recorded by the machine.  

 
 
 
 

Table 1c 
Number of Announced (Ann) and Total Monitoring Events 

by Highway and Year 
 2000 2001 2002 2003 (first half of year) 
 Ann Total Ann Total Total Total Ann Total 

A10 18 46 23 52 181 214 125 158 
A14 38 138 51 105 156 244 150 218 
R4 10 34 1 24 0 5 0 0 

 
Total 

 

 
66 

 
218 

 
75 

 
181 

 
337 

 
463 

 
275 

 
376 

µh† 
 

0.012 0.014 0.062 0.100 

† µh is calculated as the number of announced monitoring events divided by the total number of potential 
monitoring events (5475 in 2000-2002 and 2715 in the first half of year 2003), which includes intervals 
when monitoring took place as well as intervals in which no monitoring took place).  5475 is calculated as 
number of road segments (5) times the number of intervals per day (3) times the number of days per year 
(365). 

 



Table 2 
Means of Variables† 

Variable Mean 
(Std. err) 

  
Fraction speeding 0.04 

(0.004) 
Fraction vehicles traveling on highway A10 0.43 

(0.010) 
Fraction vehicles traveling on highway A14 0.56 

(0.01) 
Fraction vehicles traveling on highway R4 0.02 

(0.003) 
Quarter 1 (Jan, Feb, Mar) 0.31 

(0.009) 
Quarter 2 (Apr, May, Jun) 0.34 

(0.010) 
Quarter 3 (Jul, Aug, Sep) 0.15 

(0.007) 
Quarter 4 (Oct, Nov, Dec) 0.21 

(0.008) 
Year 2000 0.11 

(0.006) 
Year 2001 0.11 

(0.006) 
Year 2002 0.40 

(0.01) 
Year 2003 0.37 

(0.01) 
Heavy traffic density 0.02 

(0.003) 
Medium traffic density 
 

0.001 
(0.0007) 

Moderate traffic density  0.006 
(0.002) 

Light traffic density 0.97 
(0.003) 

Weekday morning rush hour 0.02 
(0.003) 

Weekday evening rush hour 0.29 
(0.009) 

Holiday 0.08 
(0.005) 

† Observations are monitoring intervals. Means are weighted by the number of 
vehicles in each interval. There are 1238 total monitoring intervals (see Table 1c 
for breakdown by year) 

 



 
 

Table 3 
Estimated Coefficients from Logistic Regression of Probability of Speeding§ 

Dep. Var: Indicator for Whether Speeding 
 (Standard errors shown in parentheses) 

 Model Specification 
Variable (1) (2) (3) 

    
Intercept -3.43 

(0.007) 
-3.46 
(0.02) 

-3.41 
(0.02) 

Indicator for highway A14 0.58 
(0.009) 

0.27 
(0.008) 

0.19 
(0.008) 

Indicator for highway R4 0.35 
(0.02) 

-0.16 
(0.02) 

-0.23 
(0.02) 

Announcement on highway A10 … … -0.18 
(0.009) 

Announcement on highway A14 … … -0.11 
(0.006) 

Announcement  on highway R4 … … -0.04 
(0.05) 

Probability of monitoring – A10‡ -0.93 
(0.04) 

-0.28 
(0.04) 

… 

Probability of monitoring – A14‡ -0.96 
(0.02) 

-0.39 
(0.02) 

… 

Probability of monitoring – R4‡ -0.38 
(0.15) 

-0.08 
(0.15) 

… 

Medium traffic density†  
 

… -0.28 
(0.06) 

-0.25 
(0.06) 

Moderate traffic density†  … 0.24 
(0.03) 

0.27 
(0.03) 

Light traffic density† … 0.22 
(0.01) 

0.24 
(0.01) 

Indicator for weekday morning rush hour … -0.45 
(0.02) 

-0.44 
(0.02) 

Indicator for weekday evening rush hour … 0.02 
(0.006) 

-0.02 
(0.006) 

Indicator for holiday … 0.51 
(0.007) 

0.49 
(0.007) 

Includes fixed effects for days of week No Yes Yes 
Includes fixed effects for months of year No Yes Yes 
Includes fixed effects for year No 

 
Yes 

 
Yes 

Number of vehicle observations 5,641,522 5,641,522 5,641,522 
% correctly classified under the model 44.0% 48.02% 48.3% 

§ The unit of observation is a vehicle passing by the radar control machine. The speeding 
status is recorded by the machine.   
† The omitted category is high traffic density.  
‡ The probability of monitoring was obtained using the procedure described in the text, which takes 
into account the expected probability of monitoring, the expected length of time spent monitoring, 
and uncertainty about the direction of the road being monitored.  

 
  



Table 4 
Decrease in Speeding Attributable to a Crackdown and the Deterrence Effect  

of Increasing the Number of Tickets 
  

Model Specification 
Avg monitoring 
probability§ 

 
Highway A10 

 
(1) 

 
(2) 

 
(3) 

pH=0.2007 
pL=0.0084 

Predicted % speeding on days without 
announcements (a) 

3.1 3.0 3.1 

 Decrease in % speeding due to the 
announcement (b) † 

0.20 0.15 0.48 

 Percentage decrease in rate of speeding * 6.5% 5.0% 15.5% 
 Implied slope of 1-F ¶ -1.04% -0.78% -2.50% 
 Effect of additional 10,000 tickets on number of 

speeders ₤ 
-3,597 -2,743 -9,603 

  
Highway A14 

   

pH=0.2441 
pL=0.0167 

Predicted % speeding on days without 
announcements (a) 

5.4 5.0 5.0 

 Decrease in % speeding due to the 
announcement (b) † 

1.01 0.40 0.48 

 Percentage decrease in rate of speeding * 18.7% 8.0% 9.6% 
 Implied slope of 1-F ¶ -4.44% -1.76% -2.11% 
 Effect of additional 10,000 tickets on number of 

speeders ₤ 
-10,291 -3,849 -4,707 

  
Highway R4 

   

pH=0.2576 
pL=0.0091 

Predicted % speeding on days without 
announcements (a) 

4.4 4.3 4.2 

 Decrease in % speeding due to the 
announcement (b) † 

0.38 0.08 0.16 

 Percentage decrease in rate of speeding * 8.6% 1.9% 3.8% 
 Implied slope of 1-F ¶ -1.53% -0.32% -0.64% 
 Effect of additional 10,000 tickets on number of 

speeders ₤ 
-3,817 -763 -1,596 

 
§ The monitoring probabilities pH and pL are derived following the procedure described in the text, which 
takes into account the probability of monitoring, the expected length of time spent monitoring, and 
uncertainty about the direction of the road being monitored. pH  is the average probability of being 
monitored during an announcement period and pL is the probability of being monitored when there was no 
announcement. 
† Change in speeding rate implied by the estimated coefficients from the logistic regression model (Table 
3) when the monitoring probability increases from pL to pH. 
* (b)/(a)*100 
¶ Slope = (b)/(pL - pH) 
₤ As described in the text. 
 



Appendix A: Proofs

Theorem 1 Let the function f : [0, S] → [0, 1] be continuous and strictly increasing.

Let the function g : [0, S] → R be continuous. Let P∗g denote the set of probability
distributions defined on the interval [0, S] that solve the following linear problem

max
µ

Z S

0

f (p)µ (p) dp

s.t.
Z S

0

g (p)µ (p) dp ≤ C. (8)

For given f, let Fg denote the set of all functions f with the property that all µ∗ ∈ P∗g
place all the probability on one or two points in [0, S]. Then, the set Fg is dense in the

set of all continuous functions g equipped with the supnorm.

If, moreover, the solution requires that probability mass be placed on two points in

[0, S], then the same two points receive all the probability when C is slightly increased.

Proof: Consider first the easy case in which the constraint is not binding at the

optimal solution. In that case, a generic f will have exactly one strict maximum, and so

the optimal µ∗ will put mass one on exactly one point (the strict maximum).

Let us now consider the more difficult case in which the constraint is binding at the

optimal solution. In that case, there exists a number λ > 0 such that µ∗ maximizes the

Lagrangean

L(µ, λ) =
Z S

0

[f (p)− λg (p)]µ (p) dp+ λC.

We will show that, if µ∗ ∈ P∗g puts positive mass on more than two points, then f is

non-generic. To this end, let A denote the set of p’s that is defined by

A = argmax
p
[f (p)− λg (p)] .

By definition of A, there is a number M such that

f (p)− λg (p) =M for p ∈ A
f (p)− λg (p) < M for p /∈ A

If µ∗ puts positive mass on more than two points, then the cardinality of A would have to
exceed 2. Consider the transformation ϕ (p) = f−1 (p/S). The function ϕ is a one-to-one



mapping of [0, S] onto itself. We can therefore write

f (ϕ (p))− λg (ϕ (p)) =M for ϕ (p) ∈ A
f (ϕ (p))− λg (ϕ (p)) < M for ϕ (p) /∈ A,

or, with the obvious meaning of symbols,

p
S
− λg (ϕ (p)) =M for p ∈ ϕ−1 (A)

p
S
− λg (ϕ (p)) < M for p /∈ ϕ−1 (A) .

Note that the set ϕ−1 (A) has the same cardinality of A. Thus, if A has cardinality

greater than 2, it means that the two numbers λ and M are such that the negatively-

sloped straight line identified by 1
λ

¡
p
S
−M

¢
is tangent to the function g (f−1 (p/S))

at more than two points and never exceeds it. This means that there is a tangent

hyperplanes to the set

Y =
©
(p, y) : y ≤ g

¡
f−1 (p/S)

¢ª
which makes contact with the set Y at more than two points and has negative slope.

We now show that, the set of f ’s such that this property does not hold is dense. To

this end, and without loss of generality, let us assume that S = 1. Our task, then, is

to show that if a negatively-sloped tangent hyperplanes to Y make contact with Y in

more than two points, there is a function f̃ close to f with the property that no tangent

hyperplane has more than two contact points. Let H denote the set of hyperplanes that

have more than two contact points with Y . Elements of H are identified by their slope

h. For every hyperplane h ∈ H, take the sup and the inf of the first dimension of all its
contact points and call those ah and bh. Consider now a continuous function dg (p) which

is equal to 0 for every p unless p ∈ (ah, bh) for some h ∈ H, in which case dg (p) assumes
values strictly between zero and 1. Let f̃ε (p) ≡ [1 + ε · dg (p)] · f (p). For any ε > 0,

the set Ỹε =
n
(p, y) : y ≤ f̃ε (p)

o
has exactly the same set of tangent hyperplanes as Y .

This follows from the fact that since the functions f and g are continuous, hyperplane h

makes contact with Y at ah and bh. Moreover, by construction no hyperplane is tangent

to Ỹε at more than two points. Since the function f̃ε (p) can be made arbitrarily close to

f (p) in the supnorm by choosing ε to be small, the set Fg is dense.

Let us now turn to the second part of the statement. For given C, suppose that the

solution requires placing probability mass on two points pL < pH . Then, the constraint



must be binding. To see this, define

pm ≡ arg min
p∈{pH ,pL}

f (p)

pM ≡ arg max
p∈{pH ,pL}

f (p) .

Since f is strictly monotone, f (pM) > f (pm), and the only reason why it is optimal to

place any probability mass on pm is to help satisfy the constraint. It must therefore be

g (pM) > C > g (pm) . At the optimal solution, moreover, it cannot be optimal to place

anything but the smallest probability mass on pm so that the constraint is just satisfied

(with equality). Denote by λ∗ the Lagrange multiplier associated to this programming

problem. Since f is strictly monotone, λ∗ > 0.

Suppose now that the constraint is relaxed slightly, by increasing C to eC = C + ε

with ε a small positive number. The solution to the programming problem is a saddle

point
³eµ, eλ´ for the Lagrangean. We now proceed to construct this saddle point. We

start by keeping the Lagrange multiplier unchanged, eλ = λ∗. Because of this choice, theeµ that maximizes the Lagrangean still places probability mass on pM and pm only, which

is what we wanted to prove. To conclude the proof we need to finish the construction

of the saddle point. To this end, observe that in order for eλ = λ > 0 to minimize the

Lagrangean, the Lagrangean must be constant with respect to λ, which is equivalent to

g (pm) eµ (pm) + g (pM) eµ (pM) = eC (9)

Since g (pM) > C > g (pm), for ε sufficiently small also g (pM) > eC > g (pm). Therefore,

it is possible to choose eµ (pm) and eµ (pM) = 1− eµ (pm) so that equation (9) is satisfied.
Choosing eµ accordingly concludes the proof.
Corollary 2 If f is increasing and the solution requires that probability mass be placed

on two points in [0, S], the probability mass placed on the largest point increases when C

is slightly increased.

Proof. >From the proof of Theorem 1 we know that the constraint (8) is binding both

at C and at C + ε. This means that for c = C,C + ε , the probability mass µc placed on

pH must solve

g (pH)µc + g (pL) (1− µc) = c.

Since f is increasing, pM = pH and thus g (pH) > g (pL) . The result follows.



Appendix B: Additional Tables 
 
 

Table B1 
Number of Announced and Unannounced Monitoring 

Events by Month and Year on all Highways† 
 2000 2001 2002 2003 (first half of 

year) 
 Ann Unann Ann Unann Ann Unann Ann Unann 

 
January 3 7 10 12 15 17 41 3 
February 10 12 7 9 17 9 45 9 
March 5 6 5 3 19 26 32 24 
April 3 18 6 4 24 21 36 24 
May 3 10 6 8 29 11 64 21 
June 4 14 4 11 27 8 57 20 
July 7 13 6 10 31 6 * * 
August 8 7 7 8 32 1 * * 
September 4 9 6 7 29 6 * * 
October 3 18 5 5 41 12 * * 
November 3 17 6 13 36 6 * * 
December 13 21 7 16 37 3 * * 
 
Total 

 
66 

 
152 

 
75 

 
106 

 
337 

 
126 

 
275 

 
101 

 
    †Sample includes all monitoring events.  
 

Table B2 
Number of Announced and Unannounced Monitoring  
Events by Day of Week and Year on all Highways† 

 2000 2001 2002 2003 (first half of 
year) 

 Ann Unann Ann Unann Ann Unann Ann Unann 
 

Saturday 8 38 23 27 40 19 36 6 
Sunday 17 29 10 34 64 31 29 20 
Monday 8 17 6 11 24 12 48 11 
Tuesday 7 15 12 8 68 17 40 17 
Wednesday 10 16 13 9 58 14 37 20 
Thursday 6 19 7 9 39 22 43 11 
Friday 10 18 4 8 44 11 42 16 
 
Total 

 
66 

 
152 

 
75 

 
106 

 
337 

 
126 

 
275 

 
101 

 
   †Sample includes all monitoring events. 

 
 
 

 



 
Table B3 

Estimated Logistic Model for the Probability of Monitoring  
when there is no announcement, by Year and by Road† 
Dep. Var: Indicator for Whether Monitoring Occurred 

 Highway 
Variables* A10 A14 R4 

Intercept -2.50 
(0.36) 

-2.43 
(0.36) 

-4.36 
(0.58) 

quarter 1 0.37 
(0.25) 

-0.12 
(0.44) 

0.45 
(0.45) 

quarter 2 -0.19 
(0.28) 

0.44 
(0.20) 

0.55 
(0.43) 

quarter 3 -1.90 
(0.49) 

-0.47 
(0.22) 

0.11 
(0.44) 

announced last week  0.15 
(0.35) 

-0.12 
(0.20) 

0.04 
(0.49) 

announced yesterday -0.22 
(0.41) 

-0.29 
(0.23) 

… 

monitored last week 0.78 
(0.40) 

1.95 
(0.36) 

2.11 
(0.34) 

monitored yesterday 0.37 
(0.36) 

0.48 
(0.19) 

-1.21 
(0.64) 

some announcement same 
day on any road 

0.71 
(0.23) 

-0.84 
(0.20) 

-1.34 
(0.50) 

year 2001 -0.15 
(0.29) 

-0.67 
(0.20) 

0.28 
(0.34) 

year 2002 -0.10 
(0.32) 

0.27 
(0.20) 

-0.26 
(0.54) 

year 2003 -0.01 
(0.31) 

0.41 
(0.24) 

… 

Number of observations 1273 1302 1451 
 
% Correctly classified 

 
76.1% 

 
73.4% 

 
80.7% 

†  The sample consists of three potential monitoring events for each day of the year, 
excluding those events during which an announcement was made.  The covariates are used 
to predict whether there was monitoring during events when there was no announcement.   
* The specification also includes fixed effects for day of week. 



 
Table B4 

Expected Length of Time Spent Monitoring, by Year and By Road 
Dep Var: Hours Spent Monitoring During a Given Event† 

 Highway 
 A10 A14 R4 

 Ann Unann Ann Unann Ann Unann 
Intercept 0.56 

(0.22) 
0.16 

(0.08) 
0.25 

(0.24) 
0.14 

(0.07) 
0.40 

(0.19) 
0.32 

(0.08) 
quarter 1 0.07 

(0.06) 
-0.03 
(0.05) 

0.01 
(0.06) 

-0.01 
(0.04) 

0.29 
(0.23) 

-0.04 
(0.04) 

quarter 2 -0.06 
(0.05) 

-0.06 
(0.05) 

-0.10 
(0.06) 

-0.01 
(0.03) 

0.05 
(0.20) 

-0.09 
(0.04) 

quarter 3 -0.06 
(0.06) 

-0.06 
(0.09) 

-0.01 
(0.06) 

0.06 
(0.04) 

0.34 
(0.18) 

0.001 
(0.04) 

year 2001 
 

0.12 
(0.11) 

0.04 
(0.05) 

0.12 
(0.08) 

0.03 
(0.03) 

… 0.002 
(0.04) 

year 2002 
 

-0.09 
(0.10) 

0.07 
(0.06) 

-0.02 
(0.07) 

0.07 
(0.03) 

… 0.02 
(0.06) 

year 2003 -0.13 
(0.10) 

0.14 
(0.06) 

-0.04 
(0.08) 

0.10 
(0.04) 

… … 

announced last week  -0.11 
(0.11) 

-0.0002 
(0.06) 

-0.04 
(0.07) 

-0.004 
(0.03) 

-0.15 
(0.17) 

0.04 
(0.04) 

announced yesterday -0.004 
(0.07) 

0.01 
(0.06) 

0.03 
(0.06) 

0.01 
(0.03) 

… … 

monitored last week -0.01 
(0.06) 

0.002 
(0.06) 

0.22 
(0.11) 

-0.03 
(0.05) 

-0.03 
(0.16) 

0.01 
(0.03) 

monitored yesterday -0.004 
(0.07) 

-0.04 
(0.06) 

-0.04 
(0.05) 

0.01 
(0.03) 

… -0.007 
(0.05) 

some announcement same 
day on any road 

… -0.03 
(0.03) 

… -0.05 
(0.03) 

… -0.04 
(0.05) 

Medium traffic density … 
 

… … 0.02 
(0.15) 

-0.02 
(0.23) 

-0.24 
(0.08) 

Moderate traffic density -0.10 
(0.36) 

 

-0.06 
(0.18) 

… 0.07 
(0.15) 

0.03 
(0.13) 

-0.21 
(0.06) 

Light traffic density -0.19 
(0.18) 

0.002 
(0.06) 

0.08 
(0.21) 

0.11 
(0.06) 

… -0.19 
(0.06) 

Holiday 
 

0.06 
(0.07) 

0.02 
(0.05) 

0.02 
(0.07) 

-0.03 
(0.03) 

… 0.03 
(0.04) 

Number of observations 
 

346 122 394 309 10 51 

R-squared 0.12 
 

0.11 0.07 0.07 0.84 0.45 

†  This regression is used to predict the length of time spent monitoring.  The sample includes all 
monitoring event, with and without announcements.  
* All specifications also include fixed effects for day of week. The variable “holiday” was 
not included in the above specifications because of too few observations.  

 



 
Table B5 

Average Predicted Probability of Monitoring 
 

Year 
 

highway 
 

no-announcement 
no-announcement this 

sector, announced other 
sector 

 
Announcement 

 
2000 

 
A10 

 
0.004 

 
0.009 

 
0.27 

 A14 0.011 0.003 0.26 
 R4 0.009 0.002 0.29 

2001 A10 0.004 0.007 0.30 
 A14 0.011 0.003 0.30 
 R4 0.014 * 0.35 

2002 A10 0.008 0.010 0.20 
 A14 0.027 0.007 0.24 
 R4 0.001 0.001 * 

2003 A10 0.011 0.018 0.19 
 A14 0.030 0.020 0.23 
 R4 * * * 

* Too few observations in the cell. 



 
Table B6 

Estimated Logistic Model for the Probability of Announcement by Highway† 
Standard errors shown in parentheses 

Dep. Var: Indicator for Whether Announced During Given Event 
 Highway 

Variables* A10 A14 R4 
Intercept -3.76 

(0.36) 
-4.07     
(0.61)     

-4.94 
(0.40) 

-4.90      
(0.41)      

 -2.65      
(0.82) 

-3.20 
(1.46) 

quarter 1 0.08 
(0.21) 

0.10 
(0.22) 

-0.004 
(0.20) 

0.02 
(0.21) 

-1.18 
(1.18) 

-1.19 
(1.18) 

quarter 2 0.22 
(0.21) 

0.17 
(0.22) 

0.02 
(0.20) 

0.03 
(0.19) 

-0.20 
(0.89) 

-0.91 
(1.82) 

quarter 3 -0.23 
(0.22) 

-0.23 
(0.22) 

-0.01 
(0.20) 

-0.003 
(0.20) 

0.48 
(0.84) 

-0.06 
(146) 

Holiday 2.23 
(0.47) 

2.13 
(0.50) 

0.98 
(0.27) 

0.99 
(0.27) 

2.50 
(1.34) 

2.28 
(1.45) 

announced last week 0.34 
(0.36) 

0.26 
(0.38) 

-0.18 
(0.21) 

-0.17 
(0.22) 

-0.06 
(0.96) 

0.48 
(1.56) 

announced yesterday -0.52 
(0.29) 

-0.52 
(0.29) 

0.19 
(0.21) 

0.19 
(0.21) 

… … 

monitored last week 1.38 
(0.41) 

1.41 
(0.41) 

2.65 
(0.38) 

2.63 
(0.39) 

-0.35 
(0.80) 

-0.32 
(0.80) 

monitored yesterday 0.25 
(0.27) 

0.24 
(0.27) 

-0.31 
(0.19) 

-0.31 
(0.19) 

… … 

year 2001 0.06 
(0.03) 

-0.008 
(0.36) 

0.42 
(0.23) 

0.45 
(0.24) 

-2.39 
(1.07) 

-2.67 
(1.24) 

year 2002** 2.13 
(0.30) 

2.31 
(0.42) 

1.55 
(0.22) 

1.53 
(0.22) 

… … 

year 2003 2.12 
(0.30) 

2.37 
(0.49) 

2.16 
(0.24) 

2.15 
(0.25) 

… … 

Fraction speeding if 
unannounced monitoring 

… 0.05 
(0.07) 

… -0.01 
(0.02) 

… 0.14 
(0.31) 

 
Number of observations 
 

 
1620 

 
1620 

 
1697 

 
1697 

 
732 

 
732 

p-value from test of joint 
significance of all 
covariates, except year 
indicators 

 
<0.0001 

 
<0.0001 

 
<0.0001 

 
<0.0001 

 
0.9015 

 
0.9116 

  † The sample includes all monitoring events.  
*All specifications include fixed effects for days of week. Some days of week indicators are 
significant for A10 and A14 in 2000 and for A14 in 2001. 
**There is only one announcement day on R4 in 2001 and none thereafter, so the R4 logistic 
regression only includes years 2000 and 2001.       

 
     



 
     

Table B7 
Correlation of Announced Monitoring with Number of Speeders 

and with the Proportion of Speeders on the Road 
p-value shown in parentheses 

 
 Number of Speeders 

 
Proportion of Cars Speeding 

Over all roads -0.03 
(0.31) 

-0.26 
(<0.0001) 

Road A10 -0.21 
(<0.0001) 

-0.32 
(<0.0001) 

Road A14 0.05 
(0.20) 

-0.77 
(<0.0001) 

Road R4 -0.05 
(0.70) 

-0.13 
(0.33) 
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Figure 3: Probability of being monitored, highway A14
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